

DRINKING WATER WATERSHED PROTECTION

Public Information Meeting October 23rd 2013 Qualicum Beach, BC

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- \rightarrow Methodology
- → Findings
- \rightarrow Conclusion

3. Watershed Management

- ightarrow What & Why
- \rightarrow How & Who

Introduction

In 2008, residents voted to establish a Drinking Water and Watershed Protection Service...

Today, we are going to talk about where we are:

- DWWP program update
- Water Budget Study review
- Integrated Watershed Management Planning

Introduction: Partnerships

Our program is founded on partnerships and collaboration

Introduction: Program development

2008

The RDN became the first regional government in British Columbia to start a Drinking Water & Watershed Protection service

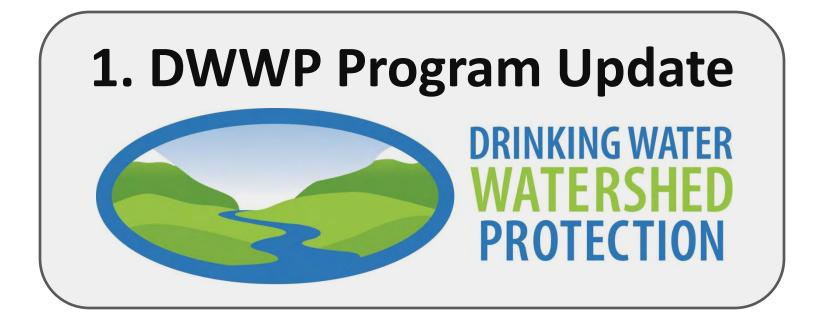
2009-Present

The DWWP is guided by a **technical advisory committee** of experts from: forestry, hydrogeology, academia, community stewardship, fisheries, water services

The program is guided by the an Action Plan that outlines the key goals and objectives

Drinking Water and Watershed Protection Action Plan

and tion Plan


Report to the Board of the Regional District of Nanaimo

by the Drinking Water-Watershed Protection Stewardship Committee

96 Timbercrest Drive Port Moody, BC V3H 4T1 T: 604.461.1700 F: 604.461.1703

20-258 Wallace Street anaimo, BC V9R 583 250,754,0651 250,754,1990

DWWP update: Program 1

1. DWWP update **Public Awareness and Involvement** \rightarrow Program 1 Program 2 \rightarrow wellsmart Program 3 Free Workshops \rightarrow Program 4 \rightarrow Program 5 \rightarrow Websites Program 6 \rightarrow \rightarrow Program 7 www.TeamWaterSmart.ca Community Booth 2. Water Budget Background \rightarrow Overview **Home Visits** \rightarrow Methodology \rightarrow Findings \rightarrow School Program we practice Conclusion \rightarrow dter 3. Watershed Management irrigation \rightarrow What & Why \rightarrow How & Who REGIONAL DISTRICT OF NANAIMO

www.RDNgetinvolved.ca

1. DWWP update

\rightarrow Program 1

- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7
- 2. Water Budget
 - → Background
 - \rightarrow Overview
 - → Methodology
 - → Findings
 - \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

DWWP update: Program 1

School Program: Fieldtrips

From the classroom....

To the watershed.....

2014 – field trips for Gr. 4 & 5

- Nanaimo River watershed
- Englishman River watershed

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

DWWP update: Program 2

Water Resources Inventory & Monitoring

Water Budget Study

Water Map

Provincial Observation Well Network Expansion

Volunteer Well Level Monitoring

Community Watershed Monitoring

1. DWWP update

- \rightarrow Program 1
- Program 2 \rightarrow
- Program 3 \rightarrow
- Program 4 \rightarrow
- Program 5 \rightarrow
- Program 6 \rightarrow
- \rightarrow Program 7

2. Water Budget

- Background \rightarrow
- Overview \rightarrow
- Methodology \rightarrow
- Findings \rightarrow
- Conclusion \rightarrow
- 3. Watershed Management
 - \rightarrow What & Why
 - \rightarrow How & Who

DWWP update: Program 2

Water Resources Inventory & Monitoring: Highlights

Provincial Observation Well Network Expansion

arksville

Nanoose

Lap*zville

Frringtor

Biver Falls

Provincial Park

Qualicum

couver

back

Gabriola OGabriola

Island

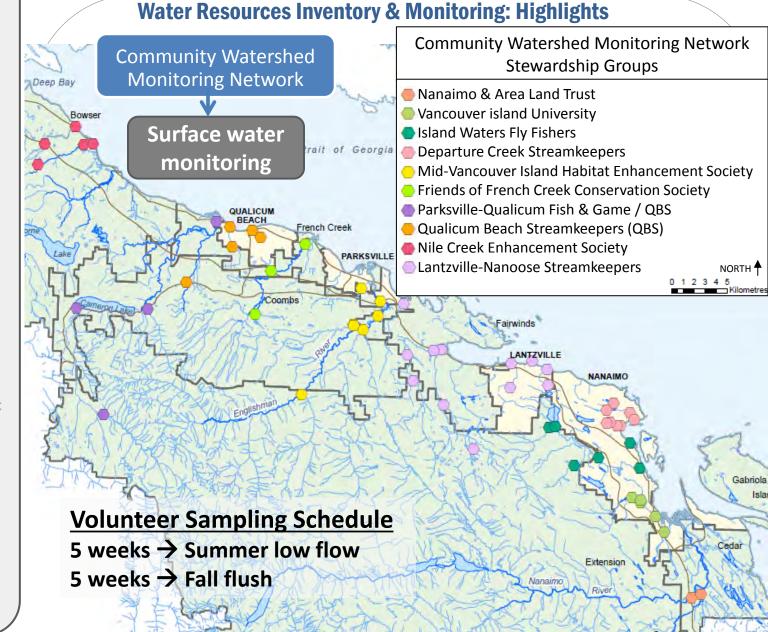
Nanaimo

1

Morden Colliery Historic Provincial Park

Volunteer Well Level Monitoring

1. DWWP update


- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- → Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- → Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- → Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

DWWP update: Program 2

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7
- 2. Water Budget
 - → Background
 - \rightarrow Overview
 - → Methodology
 - → Findings
 - \rightarrow Conclusion

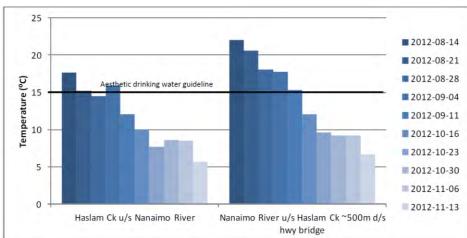
3. Watershed Management

- ightarrow What & Why
- ightarrow How & Who

DWWP update: Program 2

Water Resources Inventory & Monitoring: Highlights

Community Watershed Monitoring Network



With participation from Mile Veneuwer blank Hashtat Eintencement Society, Gualicum Beach Stemanisages, Parszille Karl, B. dama, Nik Gress Finnensment Society, Friend of Penen Creak, Nanolmo Area Land That, Hashari Gir, Kier Steward, Usona Water Ny Fahres and Vancourer John University

> Regional District of Nanaimo Community Watershed Monitoring Network 2012 Data Summary

> > Prepared by: Rasie Borlak Environmental Impoct Assessment Biologist Environmental Protection Division Ministry of Environment 2080-A Labieux Rd Nanaina, BC V9T 619

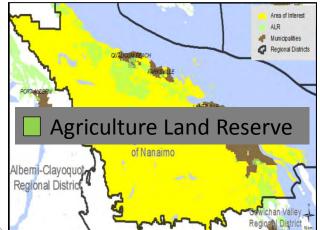
www.dwwp.ca

<u>Measurements</u>

- Temperature
- Turbidity
- Dissolved Oxygen
- Specific Conductance

1. DWWP update

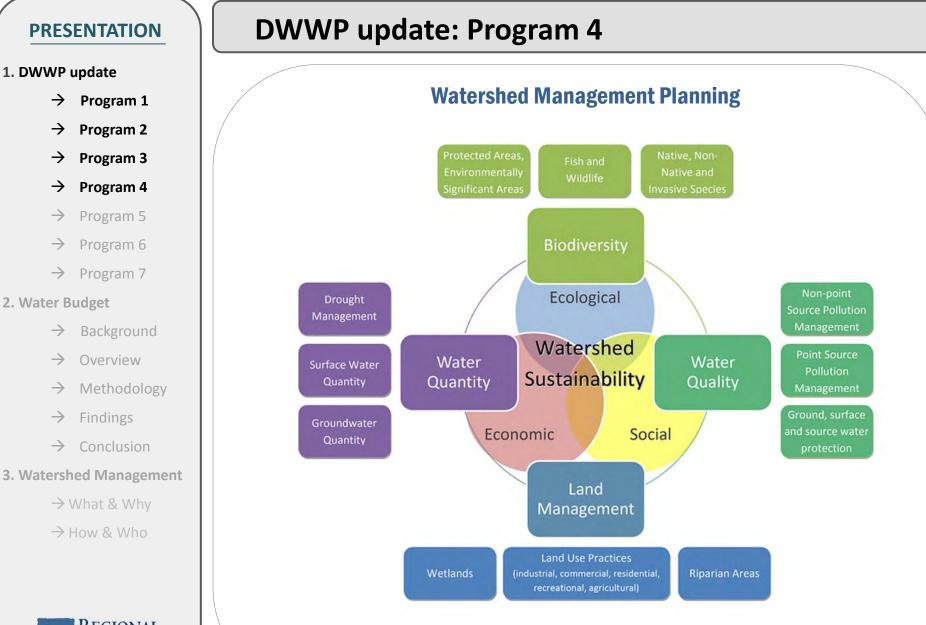
- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7
- 2. Water Budget
 - → Background
 - \rightarrow Overview
 - → Methodology
 - \rightarrow Findings
 - \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who



DWWP update: Program 3

Land Use Planning & Development

Agricultural Water Demand Model



Yellow Point Development Permit Area

1. DWWP update

- Program 1 \rightarrow
- Program 2 \rightarrow
- **Program 3** \rightarrow
- **Program 4** \rightarrow
- Program 5 \rightarrow
- Program 6 \rightarrow
- \rightarrow Program 7

2. Water Budget

- Background \rightarrow
- Overview \rightarrow
- Methodology \rightarrow
- Findings \rightarrow
- Conclusion \rightarrow

3. Watershed Management

- \rightarrow What & Why
- \rightarrow How & Who

DWWP update: Program 5

1. DWWP update

- Program 1 \rightarrow
- Program 2 \rightarrow
- **Program 3** \rightarrow
- **Program 4** \rightarrow
- Program 5 \rightarrow
- Program 6 \rightarrow
- Program 7 \rightarrow
- 2. Water Budget
 - Background \rightarrow
 - Overview \rightarrow
 - Methodology \rightarrow
 - Findings \rightarrow
 - Conclusion \rightarrow
- 3. Watershed Management
 - \rightarrow What & Why
 - \rightarrow How & Who

DWWP update: Program 5

Water Use Management

Rainwater Harvesting Incentive & Guidebook

Rainwater Harvesting BEST PRACTICES GUIDEBOOK

mish Columbia Canada

Storing winter/spring rainwater for summer usage takes pressure off aquifers & *municipal supplies*

DWWP update: Program 6

1. DWWP update

- Program 1 \rightarrow
- Program 2 \rightarrow
- **Program 3** \rightarrow
- **Program 4** \rightarrow
- **Program 5** \rightarrow
- **Program 6** \rightarrow
- Program 7 \rightarrow

2. Water Budget

- Background \rightarrow
- Overview \rightarrow
- Methodology \rightarrow
- \rightarrow Findings
- Conclusion \rightarrow
- 3. Watershed Management
 - \rightarrow What & Why
 - \rightarrow How & Who

No.

Surface Seal

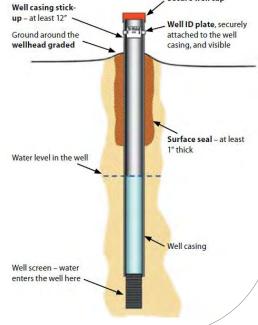
Well Casing Stick-up

Water Quality Testing

Well deactivation

1 2

3


4

5

Map by Pam Newton Site 22, of note: NC Site 1, of note: Mn, TC Site 31, of note: E coli Site 36. of note: Na. TDS of note: CI, Na, TDS, FI Site 17, of note: FI Site 40 of none TC Mn Na Morden Rd AT ANALY TIC AS NO CE SOA TOS I Site 13. of note: NC Site \$1, of note **Beck lake** Site 8, of note: Site 12, of note: NC Site 7. of note: NC Site 9, of note: NC 688 letters Site 2, of note: Mn, TC 120 volunteer Well Sampling Sites - Phases 1 & 2 properties outh Wellington Legend Phase 1 Well Sites 48 properties Phase 2 Well Sites sampled 2011 Volunteer Well Water Quality Survey New/ Rural Water Quality Stewardship Program **Rebate Item** Well Cap

Water Quality Management

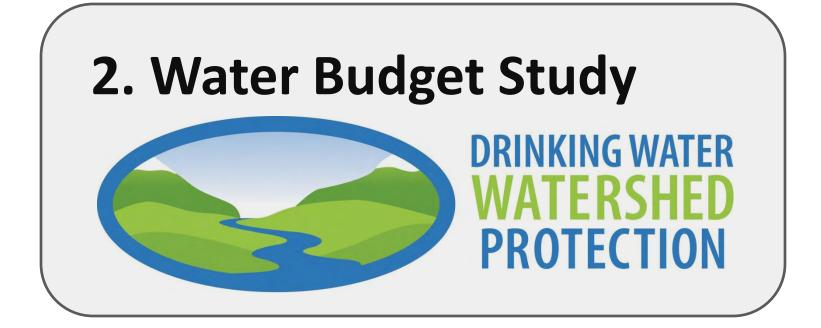
1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7
- 2. Water Budget
 - → Background
 - \rightarrow Overview
 - → Methodology
 - \rightarrow Findings
 - \rightarrow Conclusion

3. Watershed Management

- \rightarrow What & Why
- ightarrow How & Who

DWWP update: Program 7


Adapting to Climate Change

- **Sustainability** ensure sustainable aquatic ecosystems with intact riparian vegetation and adequate instream flows.
- Adaptability -

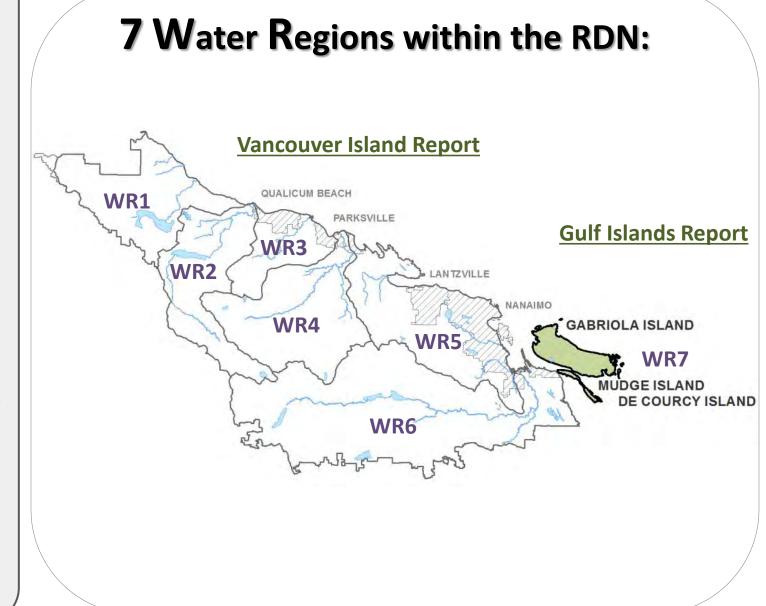
•

- find ways to do more in-season management of water that is based on real time data.
- **Collaboration** public processes at the watershed level that develop information and inform decision-making in a public way
- Efficiency -
- conservation of water and more efficient use

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget


- → Background
- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion

3. Watershed Management

- \rightarrow What & Why
- ightarrow How & Who

Water Budget Study

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- → Findings
- \rightarrow Conclusion

3. Watershed Management

 \rightarrow What & Why

ightarrow How & Who

Water Budget Study

Gabriola, Mudge, & Decourcey Water Budget Project Report QUALICUM BEACH PARKSVILLE LANTZVILLE Prepared by: NANAIMO GABRIOLA ISLAND MUDGE ISLAND **DE COURCY ISLAND** Vancouver Island Water Budget Project Report QUALICUM BEACH

PARKSVILLE

LANTZVILLE

NANAIMO

GABRIOLA ISLAND

MUDGE ISLAND

DE COURCY ISLAND

Prepared by:

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

→ Background

- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion

3. Watershed Management

- \rightarrow What & Why
- ightarrow How & Who

Water Budget Study: Background

Project Goal

To **improve understanding** of regional water resources by:

- Identifying <u>water stores</u>
- Estimating how much water they hold
- Characterizing how water moves between the stores
- Identifying water stores <u>under stress</u>

Justification

The Water Budget Project was specifically developed to.....

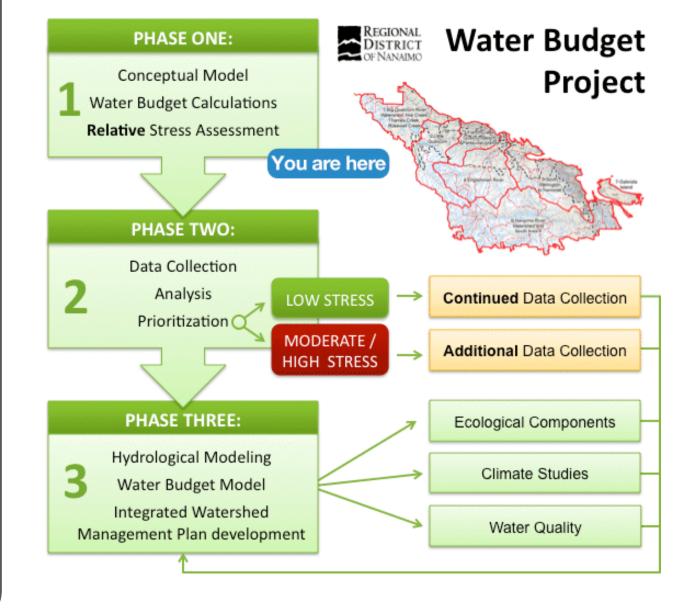
✓ Meet the goal of the DWWP program:

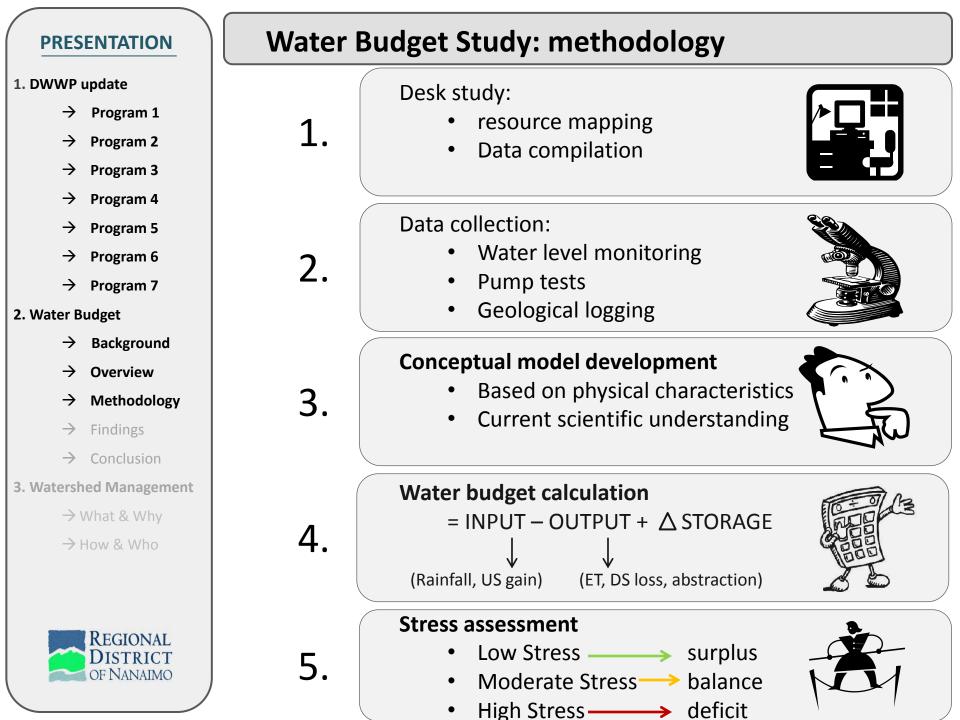
[to ensure that we have a sufficient, safe and sustainable supply of water]

✓ Address the direction of the 2010 Snapshot Report:

[to ensure sufficient clean water for human, environmental, and economic needs]

1. DWWP update


- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7


2. Water Budget

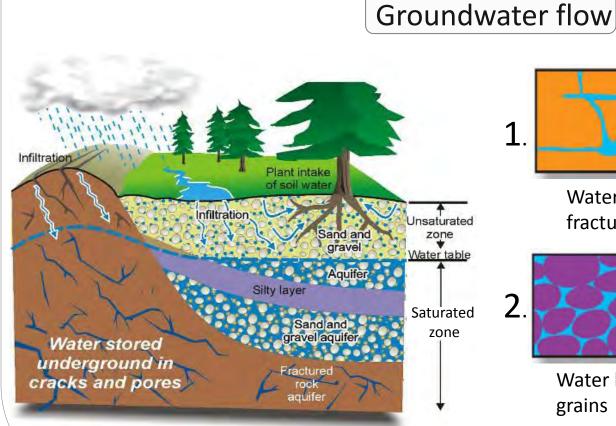
- \rightarrow Background
- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

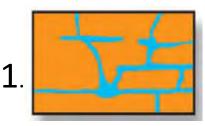
Water Budget Study: Project overview

1. DWWP update

- Program 1 \rightarrow
- Program 2 \rightarrow
- **Program 3** \rightarrow
- **Program 4** \rightarrow
- **Program 5** \rightarrow
- **Program 6** \rightarrow
- \rightarrow Program 7

2. Water Budget

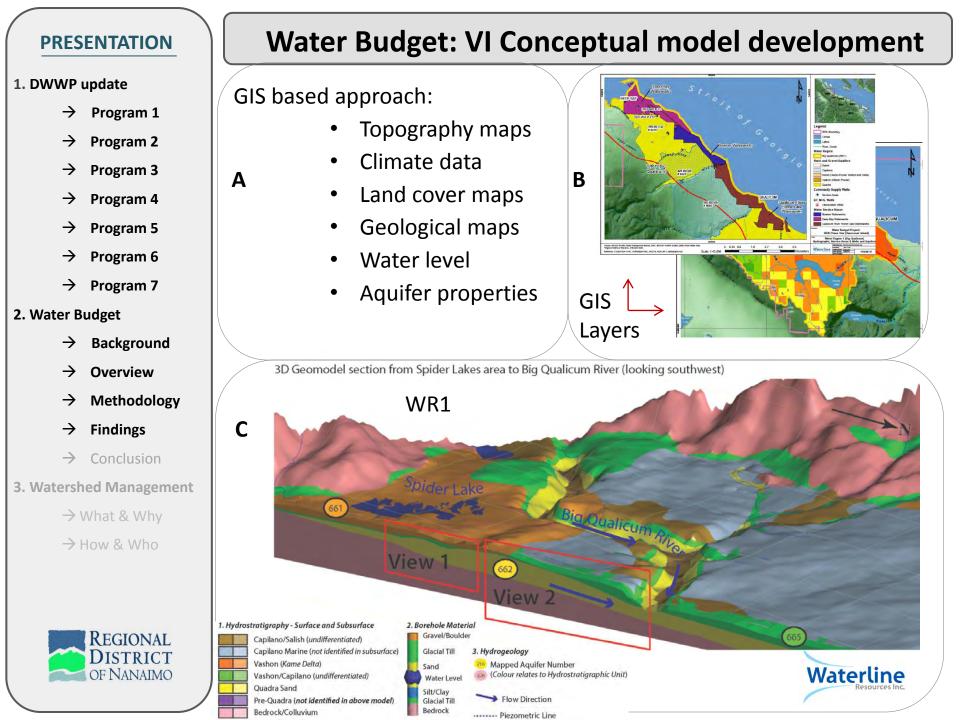

- Background \rightarrow
- Overview \rightarrow
- Methodology \rightarrow
- Findings \rightarrow
- Conclusion \rightarrow
- 3. Watershed Management
 - \rightarrow What & Why
 - \rightarrow How & Who



Water Budget Study: methodology


Conceptual model development

Example.....

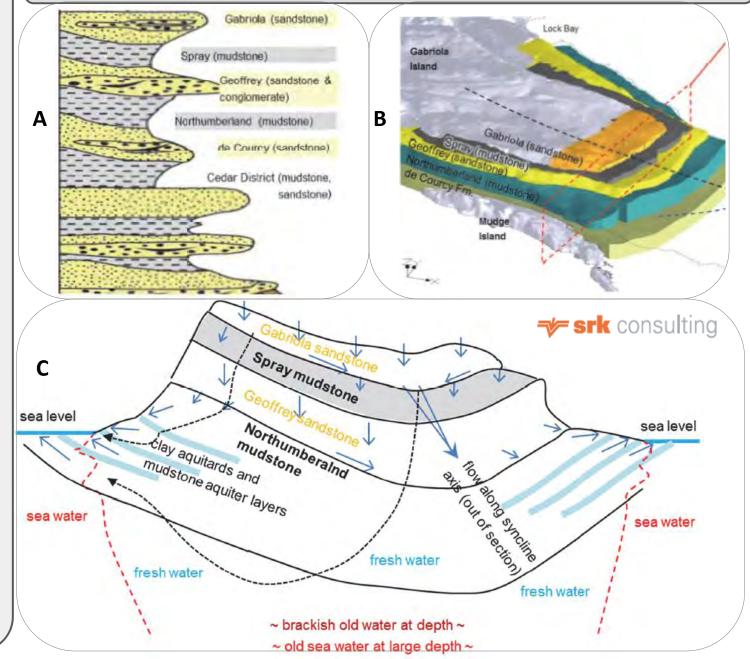


Water in rock fractures

Water between grains

Photo Credit: Natural Resources Canada

1. DWWP update


- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- \rightarrow Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

Water Budget: Gab conceptual model development

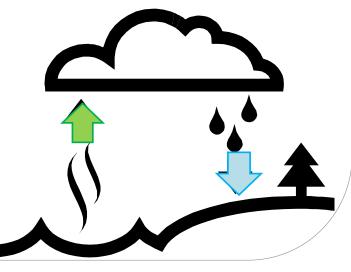
Water Budget Study

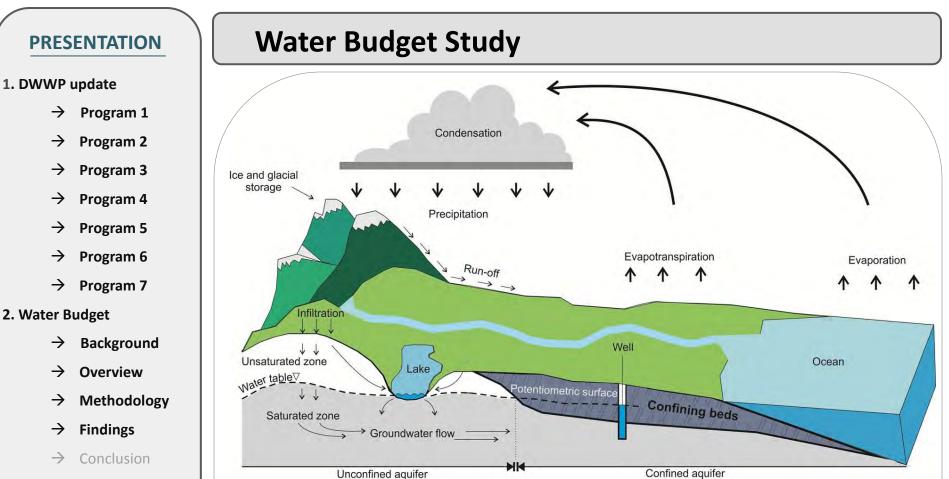
1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- → Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

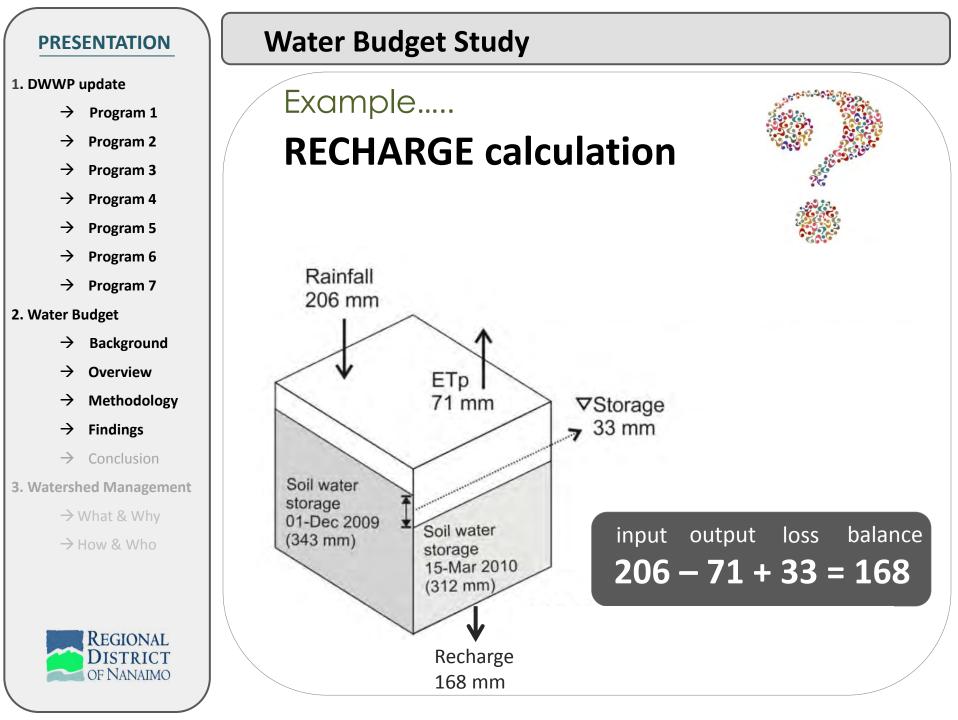

Water Budget Calculations



= input – output + ∇ storage

(rainfall)

(evaporation)


3. Watershed Management

 \rightarrow What & Why

ightarrow How & Who

+ Inputs	- Outputs	▽ Change in storage			
rainfall	Evaporation & transpiration	Snowpack			
surface water inflow	Surface water outflow	Soil zone			
groundwater inflow	Groundwater outflow	Streams, rivers, reservoirs			
imported water	Exported water	Aquifers			
imported water	Exported water	Aquiters			

Water Budget Study

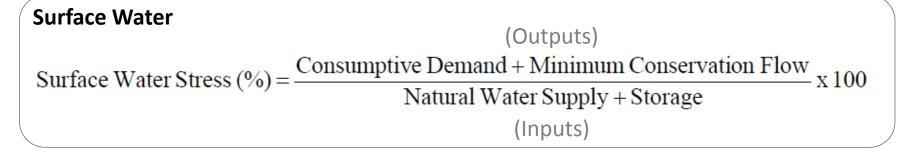
1. DWWP update

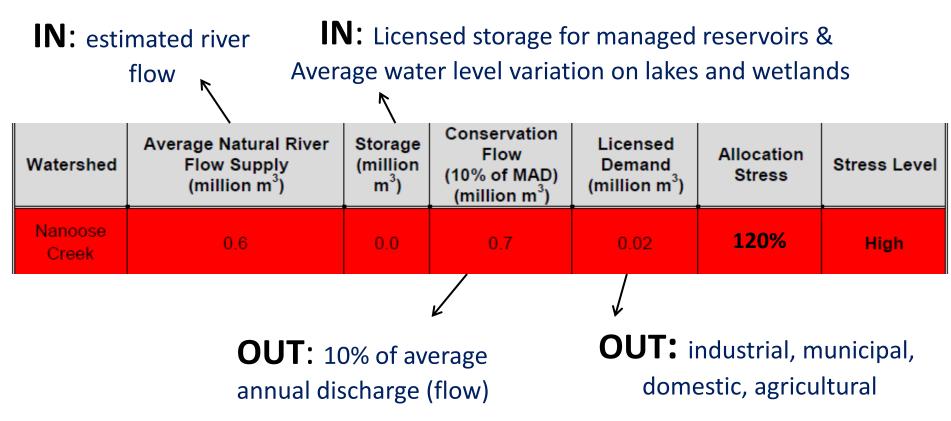
- \rightarrow Program 1
- Program 2 \rightarrow
- **Program 3** \rightarrow
- **Program 4** \rightarrow
- **Program 5** \rightarrow
- **Program 6** \rightarrow
- \rightarrow Program 7

2. Water Budget

- → Background
- Overview \rightarrow
- Methodology \rightarrow
- Findings \rightarrow
- Conclusion \rightarrow
- 3. Watershed Management
 - \rightarrow What & Why
 - \rightarrow How & Who

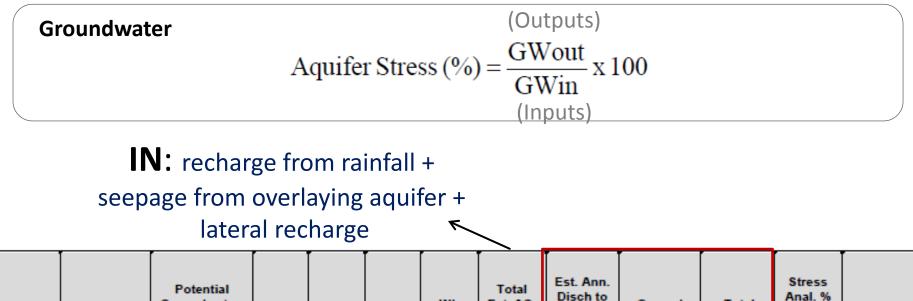
Stress Assessments: VI


dp


Calculation of the % of supply that is demanded (Based on Summer Conditions)

	Input (supply)	Output (demand)	Demand (% supply)	Stress Ranking
150 -			>150%	Very high
150 -			100-150%	High
125 -			-	
100 -				
			75-100%	Moderate-high
75 -			50-75%	Moderate
50 =			25-50%	Low-moderate
25 =			23 3070	
			0-25%	Low
0 =			1	

Water Budget Study


Stress Assessments: VI

Water Budget Study

Stress Assessments: VI

Aquifer Tag No.	Aquifer Lithology	Potential Groundwater- Surface water or Aquifer to Aquifer Interaction	MOE Obs Well	Seas. Fluc.	Long Term Fluc.	WL Trend (up or down)	Total Est. AQ. Rec. (TRin) (Rp/I + Rmb)	Disch to Cr. & Down Grad Aquifer (Tc out)	Ground Water Use Estimate (ANTHout)	Total Out [TcOut + ANTH _{out}]	Anal. % GW Use of the avail. AQ. Rec.	Relative Stress Assess.
			ID	(m)	(m)	U/D	(m³/yr)		(m³/yr)	(m³/yr)	(%)	Lo, Mod, Hi
219	Quadra	Nanoose Creek, Ocean	392, 393	?	?	L	1.6E+08	1.56E+07	2.8E+06	1.83E+07	11	Lo
	•	•										

OUT: loss to downstream creek or aquifer + human demand (abstractions)

Findings: Water Stress Assessment

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- \rightarrow Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - ightarrow What & Why
 - ightarrow How & Who

GI: 13 Sub-regions 5 deficit regions → (July – Aug) 1 deficit region → (Apr – Sept)

(demand > supply)

QUALICUM BEACH

PARKSVILLE

VI: 43 Sub-regions

10 Low stress

- 23 7 Low/Mod stress
 - 6 Mod stress
 - 11 Mod/High stress
- 20 6 High stress
 - 3 V.High stress

1. DWWP update

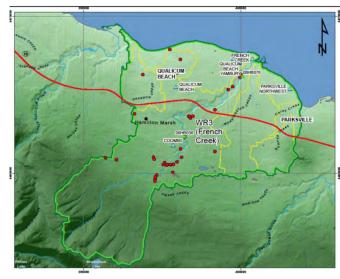
- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- \rightarrow Conclusion

3. Watershed Management

- ightarrow What & Why
- ightarrow How & Who


Findings: Vancouver Island

WR2: Little Qualicum

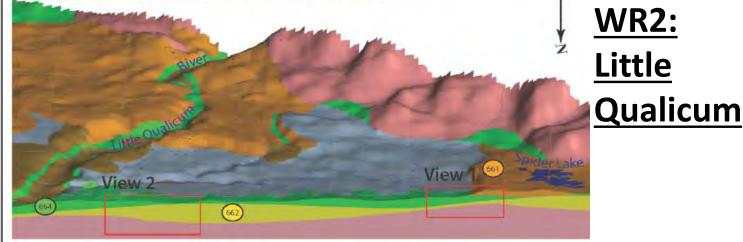
- Fifth largest water region
- area of approximately 259 km²
- Two hydrometric stations
- six climate stations
- ~42 surface water diversion points
- ~387 wells

WR3: French Creek

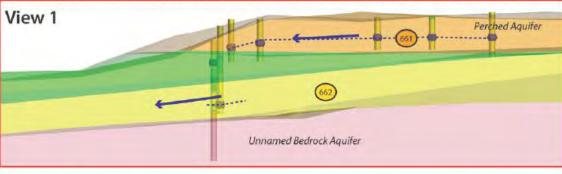
- One of the smallest water regions
- area of approximately 121 km²
- Two hydrometric stations
- five climate stations
- ~68 surface water diversion licenses
- ~895 wells

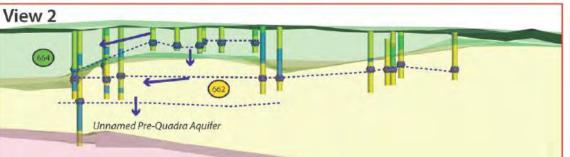
1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7


2. Water Budget

- → Background
- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who



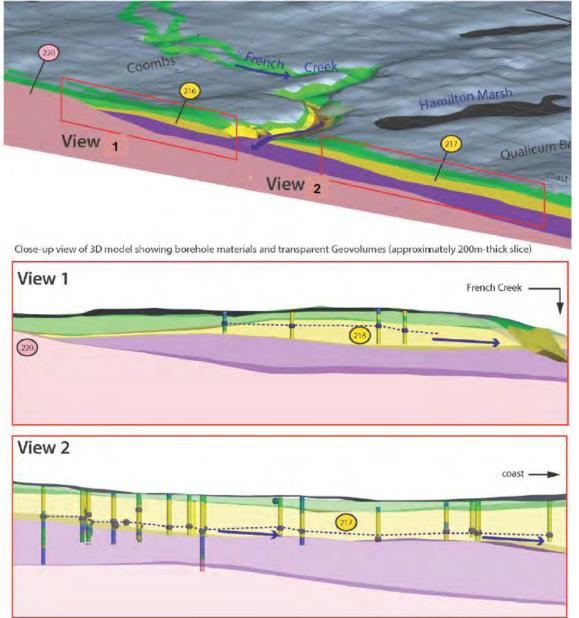

Findings: Vancouver Island

3D Geomodel section from Spider Lakes area to lower Little Qualicum River (looking south).

Close-up view of 3D model showing borehole materials and transparent Geovolumes (approximately 200m-thick slice)

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7


2. Water Budget

- → Background
- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

Findings: Vancouver Island

3D Geomodel section from the Coombs area to Qualicum Beach and the coast (looking southwest).

<u>WR3:</u> <u>French</u> <u>Creek</u>

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

Findings: Vancouver Island

WR2: Little Qualicum

Table 16: WR2 (LQ) – Surface Water Stress Analysis

Watershed	Average Natural River Flow Supply (million m ³)	Storage (million m ³)	Conservation Flow (10% of MAD) (million m ³)	Licensed Demand (million m ³)	Allocation Stress	Stress Level
Little Qualicum River	18.89	4.85	13.46	0.20	58%	Moderate

Surface water: moderate stress, little qualicum

Table 20: Summary of Water Budget and Stress Analysis – WR2 (LQ)

Aquifer Tag No.	Aquifer Lithology	Potential Groundwater- Surface water or Aquifer to Aquifer Interaction	MOE Obs Well	Seas. Fluc.	Long Term Fluc. (PDO)	WL Trend (up or down)	Total Est. AQ. Rec. (TRin) (Rp/I + Rmb)	Est. Ann. Disch to Cr. & Down Grad Aquifer (Tc out)	Ground Water Use Estimate (ANTHout)	Total Out [TcOut + ANTH _{out}]	Stress Anal. % GW Use of the avail. AQ. Rec.	Relative Stress Assess.
			D	(m)	(m)	U/D	(m³/yr)		(m³/yr)	(m³/yr)	(%)	Lo, Mod, Hi
662	Quadra	Ocean, LQ	391	2.50	0.80	U	3.2E+07	0.0E+00	1.22E+06	1.22E+06	4	Lo
661	Kame	Spider LK, Horne?	?	?	?	?	1.9E+07	1.2E+07	4.13E+04	1.17E+07	65	Mod
664	Salish	Ocean, LQ	389	3.00	?	D	3.7E+07	0.0E+00	1.39E+06	1.39E+06	4	Lo
663	Kame (Vashon Gf) top of Whiskey Cr.	Whiskey Cr., LQ	?	?	?	?	3.8E+07	2.9E+07	1.08E+05	2.92E+07	81	Mod-Hi
217	Quadra	LQ and Ocean	?	?	?	?	7.2E+06	4.9E+06	4.42E+05	5.32E+06	87	Mod-Hi

Groundwater: 2 low stress, 1 moderate & 2 moderate-high stress

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- \rightarrow Background
- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

Findings: Vancouver Island

WR3: French Creek

Table 26: WR3 (FC) – Relative Surface Water Stress Assessment Results

Watershed	Average Natural River Flow Supply (million m ³)	Storage (million m ³)	Conservation Flow (10% of MAD) (million m ³)	Licensed Demand (million m ³)	Allocation Stress	Stress Level
French Creek	1.40	0.11	1.75	0.10	123%	High
	P. 1. 12 (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				and the second	

Surface water: high stress, French Creek

Table 30: Summary of Water Budget and Stress Analysis - WR3 (FC)

Aquifer Tag No.	Aquifer Lithology	Potential Ground Water- Surface water or Aquifer to Aquifer Interaction	MOE Obs Well	Seas. Fluc.	Long Term Fluc.	WL Trend (up or down)	Total Est. AQ. Rec. (TRin) (Rp/I + Rmb)	Est. Ann. Disch to Cr. & Down Grad Aquifer (Tc out)	Ground Water Use Estimate (ANTHout)	Total Out [TcOut + ANTH₀ut]	Stress Anal. % GW Use of the avail. AQ. Rec.	Relative Stress Assess.
			ID	(m)	(m)	U/D	(m³/yr)		(m³/yr)	(m³/yr)	(%)	Lo, Mod, Hi
220	Haslam	FC	287		9.1	D	6.4E+06	5.1E+05	2.2E+06	2.7E+06	42	Lo-Mod
216	Quadra	FC	314	1.60	3.60	D/L	4.5E+07	3.8E+07	4.1E+06	4.5E+07	100	Hi
217	Quadra	FC and Ocean	321, 325, 303	5	12	D/L	8.3E+06	2.5E+06	4.7E+06	1.1E+07	133	Hi
212	NG	Ocean	NA	NA	NA	NA	8.8E+05	0.0E+00	5.0E+05	5.0E+05	58	Mod

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7
- 2. Water Budget
 - → Background
 - \rightarrow Overview
 - \rightarrow Methodology
 - \rightarrow Findings
 - \rightarrow Conclusion
- 3. Watershed Management

 \rightarrow What & Why

 \rightarrow How & Who

Findings: Vancouver Island

WR2: Little Qualicum recommendations

- Observation wells in aquifers 661, 663 & 217
- Summer surface flow measurement McBey Creek,

Lockwood Creek & Whiskey Creek

• Lake level monitoring on Illusion Lake and Spider Lake

WR3: French Creek recommendations:

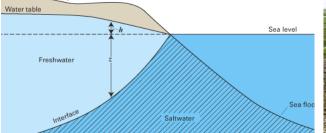
- Observation well in aquifer 212
- Summer surface flow measurements at Morning Star

Creek, Grandon Creek & Carrey Creek

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget


- → Background
- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

Findings: data gaps

Author recommendations:

- 1. Mandatory well log submission
- 2. Standardization of aquifer testing
- 3. Increase **well observation** network
- 4. Reactivation of stream gauging (WSC)
- 5. Increase saline intrusion monitoring
- 6. Improve Water Budget calculation parameters
 - Gabriola \rightarrow water use data from survey
 - Hydrological properties

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- \rightarrow Conclusion
- 3. Watershed Management
 - \rightarrow What & Why
 - ightarrow How & Who

Conclusion

The Phase One Water Budgets provide the most comprehensive collation of information on the region's water resources that has been made available to date

- Results are purely conceptual and not intended for water management decision making or policy development
 - Large degree of **uncertainty** due to lack of data
- Highlights data gaps and need for increased monitoring
- Stepping stone for the future!

For more details and to download the complete reports VISIT:

Info Sessions month

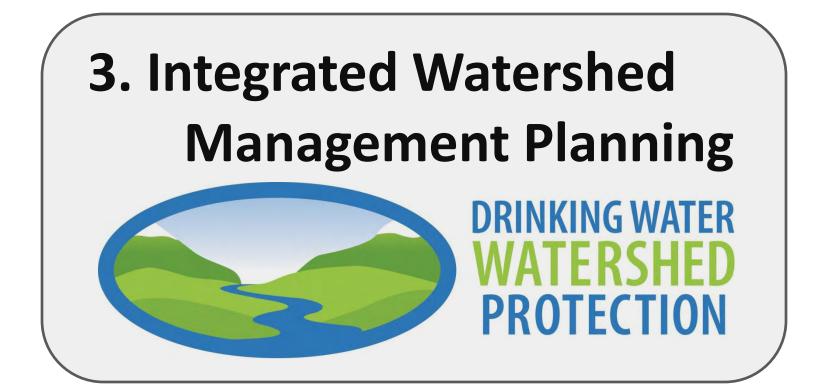
Vancouver Island

www.rdnwaterbudget.ca

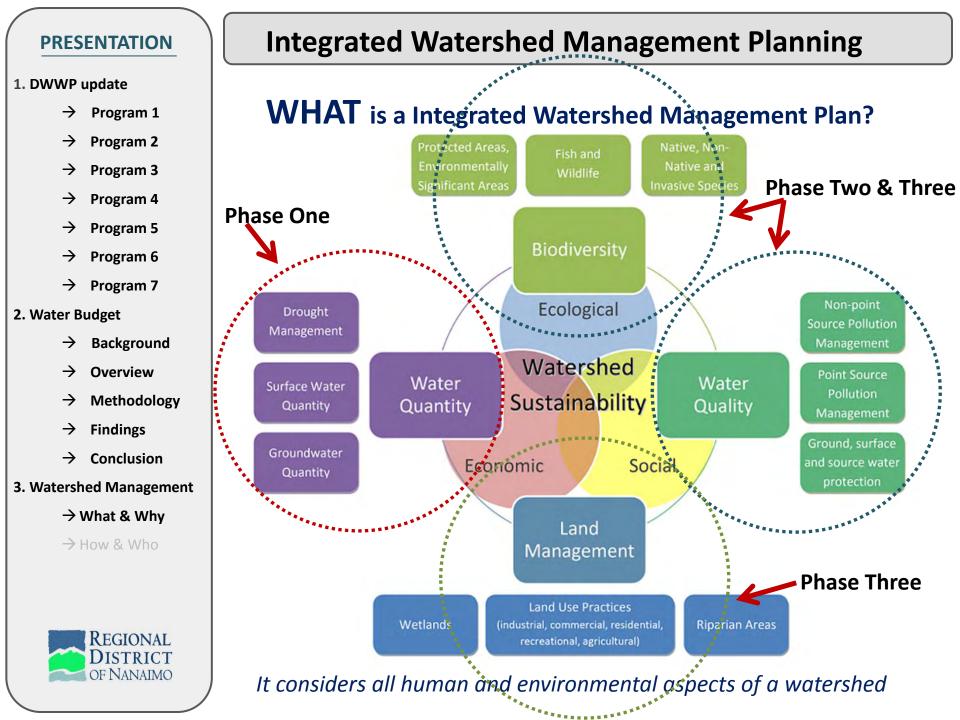
Report Download

Water Budget Project: RDN Phase One (Gabriola, DeCourcy & Mudge Islands)

Report Prepared for Regional District of Nanaimo



Reconsulting BRC Consulting



These Phase 1 Water Budget assessments provide a preliminary indication of the level of stress on RDN water regions and mapped aquifers. Further Investigations into actual water availability and water use are required.

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget

- → Background
- \rightarrow Overview
- → Methodology
- \rightarrow Findings
- \rightarrow Conclusion

3. Watershed Management

\rightarrow What & Why

 \rightarrow How & Who

Integrated Watershed Management Planning

WHY is it needed?

 Land use activities such as forestry, mining, agriculture, urbanization, fisheries and recreation all impact water resources

Water resource problems are reaching global proportions; how we manage our water and how our neighbors manage theirs has an impact on all of us

 There is a wide variety of processes that affect the hydrological cycle; only managing one aspect is mismanagement. A holistic approach is the only way forward

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7
- 2. Water Budget
 - → Background
 - \rightarrow Overview
 - \rightarrow Methodology
 - \rightarrow Findings
 - \rightarrow Conclusion
- 3. Watershed Management
 - ightarrow What & Why
 - ightarrow How & Who

Integrated Watershed Management Planning

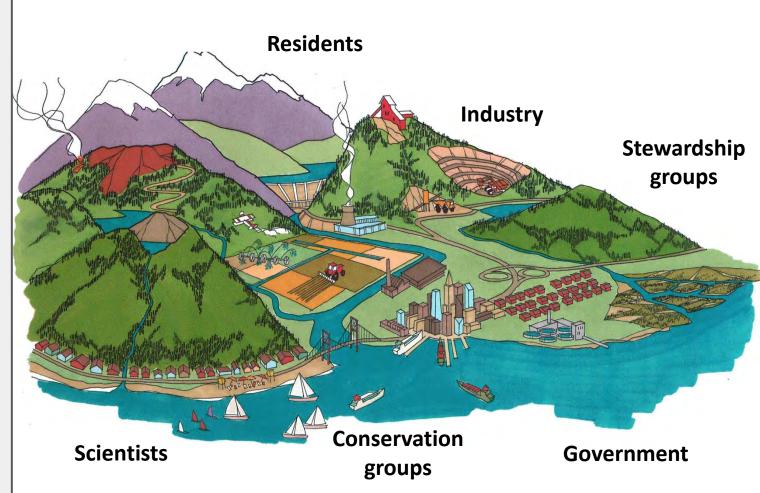
HOW? What does a planning framework include?

- 1. Identification of river basin areas (water regions)
- 2. Identification of **water resources** (surface and ground water)
- 3. Identification of *measurement* parameters (chemical/ecological/social)
- 4. Identification of *protected areas* (forests, parks, fisheries)
- 5. Assess current state (i.e. poor, good, high) \rightarrow WHAT
- 6. Reasons for **not achieving** good status \rightarrow WHY
- **7.** Action plan to achieve good status/improve \rightarrow HOW

1. DWWP update

- \rightarrow Program 1
- \rightarrow Program 2
- \rightarrow Program 3
- \rightarrow Program 4
- \rightarrow Program 5
- \rightarrow Program 6
- \rightarrow Program 7

2. Water Budget


- \rightarrow Background
- \rightarrow Overview
- \rightarrow Methodology
- \rightarrow Findings
- \rightarrow Conclusion

3. Watershed Management

- ightarrow What & Why
- ightarrow How & Who

Integrated Watershed Management Planning

WHO?

A key component to the success of these plans is public input...you live in the watershed! You know it best

In your opinion:

- what are the priority watershed issues?
- who is responsible for watershed management?
- what do you think the DWWP program should focus on?

Thank You!