

Public Information Meeting October 10th 2013 Parksville, BC

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Introduction

In 2008, residents voted to establish a Drinking Water and Watershed Protection Service...

Today, we are going to talk about where we are:

- DWWP program update
- Water Budget Study review
- Integrated Watershed Management Planning

Introduction: Partnerships

Our program is founded on partnerships and collaboration

Municipalities:

The public: residents, community associations, streamkeeper groups, professionals, students.

Other governmental organizations:

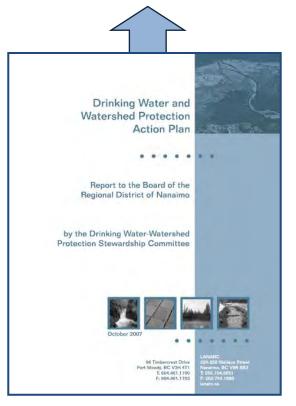
Other RDN departments:

Sustainability, Wastewater, Rec & Park

Introduction: Program development

2008

The RDN became the first regional government in British Columbia to start a Drinking Water & Watershed Protection service


2009-Present

The DWWP is guided by a **technical advisory committee** of experts from: forestry, hydrogeology, academia, community stewardship, fisheries, water services

The program is guided by the an Action Plan that outlines the key goals and objectives

7 Program Actions

1. DWWP Program Update DRINKING WATER WATERSHED PROTECTION

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 1

Public Awareness and Involvement

we practice

Free Workshops

Websites

Community Booth

Home Visits

School Program

www.RDNgetinvolved.ca

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 1

Public Awareness and Involvement

School Program: Fieldtrips

From the classroom....

To the watershed.....

2014 - field trips for Gr. 4 & 5

- Nanaimo River watershed
- Englishman River watershed

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 2

Water Resources Inventory & Monitoring

Water Budget Study

Water Map

Provincial Observation Well Network Expansion

Volunteer Well Level Monitoring

Community Watershed Monitoring

1. DWWP update

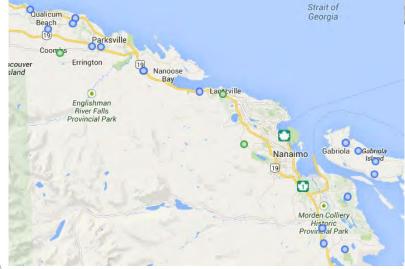
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who


DWWP update: Program 2

Water Resources Inventory & Monitoring: Highlights

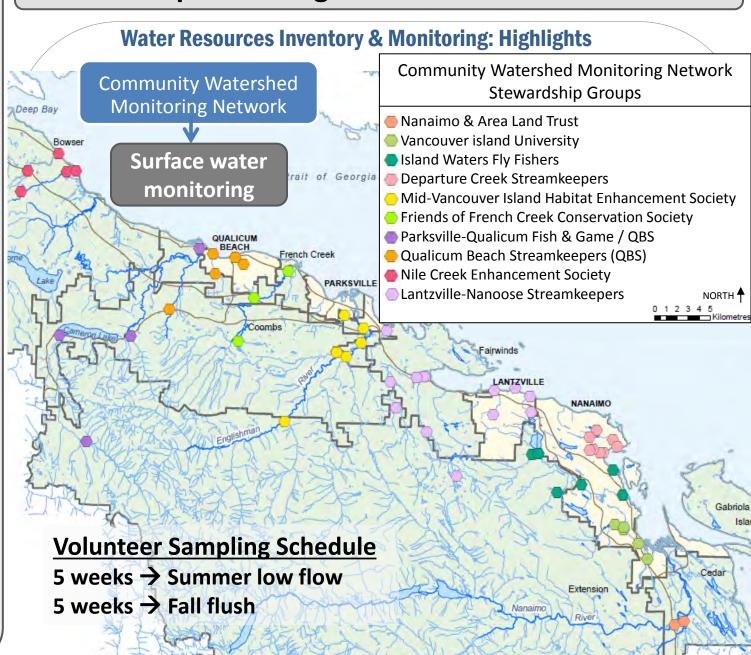
Provincial Observation Well Network Expansion

Volunteer Well Level Monitoring

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 2

1. DWWP update

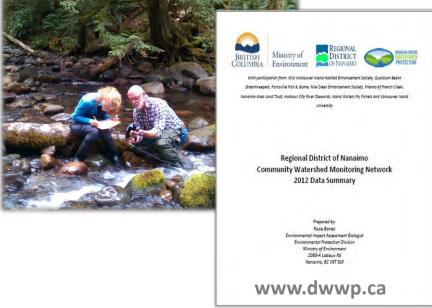
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

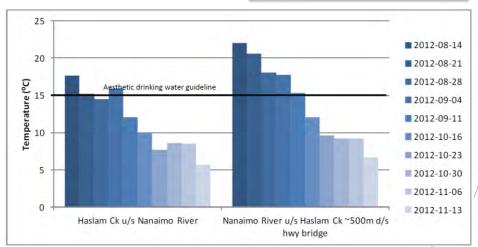
3. Watershed Management

- → What & Why
- → How & Who



DWWP update: Program 2

Water Resources Inventory & Monitoring: Highlights


Community Watershed Monitoring Network

Measurements

- Temperature
- Turbidity
- Dissolved Oxygen
- Specific Conductance

1. DWWP update

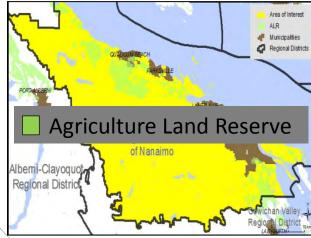
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who



DWWP update: Program 3

Land Use Planning & Development

Agricultural Water Demand Model

Yellow Point Development Permit Area

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 4

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

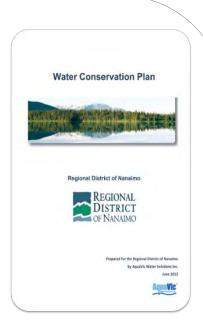
3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 5

Water Use Management

Water Conservation Plan


Toilet Replacement Rebate

Water Purveyor Working Group

Water Use Reporting Centre

Rainwater Harvesting Incentive & Guidebook

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 5

Water Use Management

Rainwater Harvesting Incentive & Guidebook

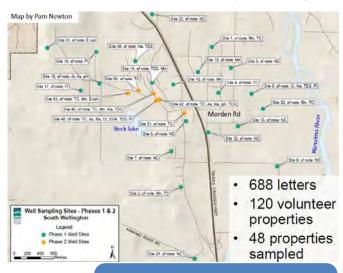
Storing winter/spring rainwater for summer usage takes pressure off aquifers & municipal supplies

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

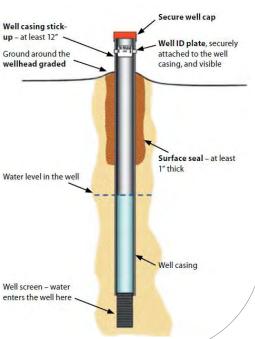
- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion


3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 6

Water Quality Management


2011 Volunteer Well Water Quality Survey

Rural Water Quality Stewardship Program

New!

No.	Rebate Item
1	Well Cap
2	Surface Seal
3	Well Casing Stick-up
4	Well deactivation
5	Water Quality Testing

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 7

Adapting to Climate Change

- **Sustainability** ensure sustainable aquatic ecosystems with intact riparian vegetation and adequate instream flows.
- Adaptability find ways to do more in-season management of water that is based on real time data.
- **Collaboration** public processes at the watershed level that develop information and inform decision-making in a public way
- Efficiency conservation of water and more efficient use

2. Water Budget Study

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study

7 Water Regions within the RDN:

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study

• Gabriola, Mudge, & Decourcey Water Budget Project Report

Vancouver Island Water Budget Project Report

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study: Background

Project Goal

To **improve understanding** of regional water resources by:

- Identifying water stores
- Estimating <u>how much water</u> they hold
- Characterizing **how water moves** between the stores
- Identifying water stores <u>under stress</u>

Justification

The Water Budget Project was specifically developed to.....

✓ Meet the goal of the DWWP program:

[to ensure that we have a sufficient, safe and sustainable supply of water]

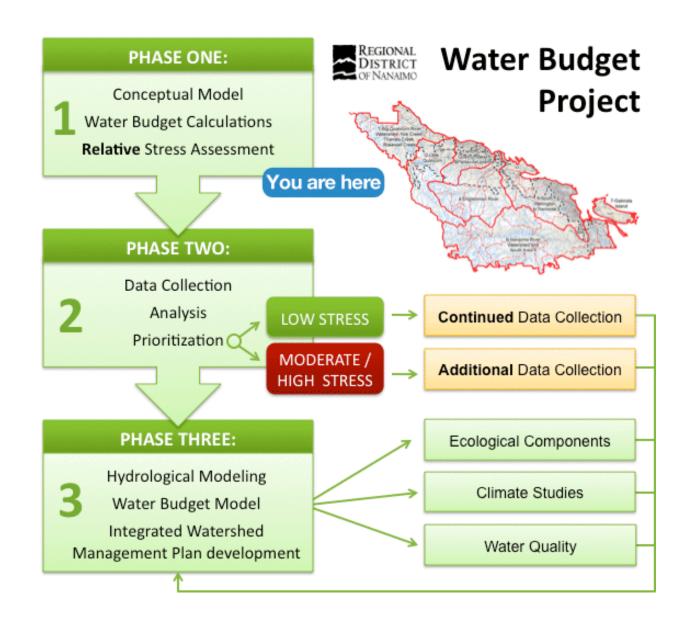
✓ Address the direction of the 2010 Snapshot Report:

[to ensure sufficient clean water for human, environmental, and economic needs]

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study: Project overview

- 1. DWWP update
 - → Program 1
 - → Program 2
 - → Program 3
 - → Program 4
 - → Program 5
 - → Program 6
 - → Program 7
- 2. Water Budget
 - → Background
 - → Overview
 - → Methodology
 - → Findings
 - → Conclusion
- 3. Watershed Management
 - → What & Why
 - → How & Who

Water Budget Study: methodology

Desk study:

2.

3.

4.

5.

- resource mapping
 - Data compilation

Data collection:

- Water level monitoring
- Pump tests
- Geological logging

Conceptual model development

- Based on physical characteristics
- Current scientific understanding

Water budget calculation
= INPUT − OUTPUT + △ STORAGE

(Rainfall, US gain) (ET, DS loss, abstraction)

Stress assessment

- Low Stress ———— surplus
- Moderate Stress → balance
- High Stress deficit

1. DWWP update

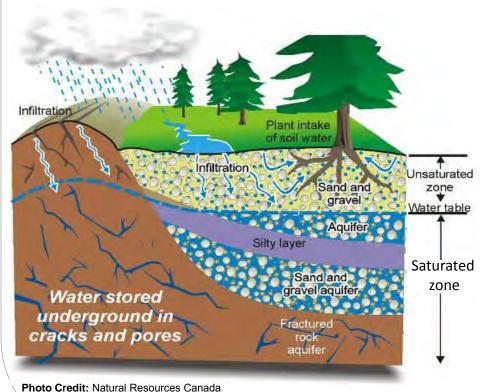
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who



Water Budget Study: methodology

Conceptual model development

Example.....

Groundwater flow

Water in rock fractures

Water between grains

1. DWWP update

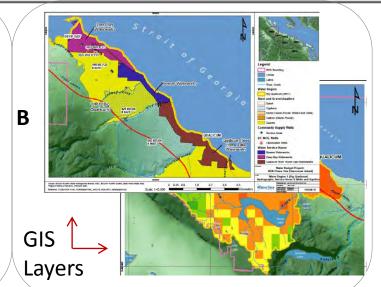
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

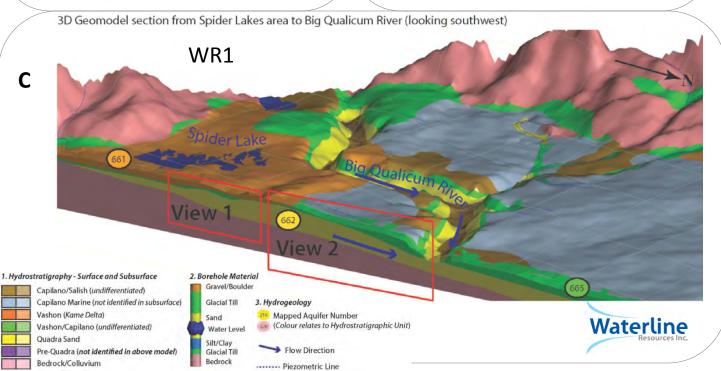
2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who




Water Budget: VI Conceptual model development

GIS based approach:

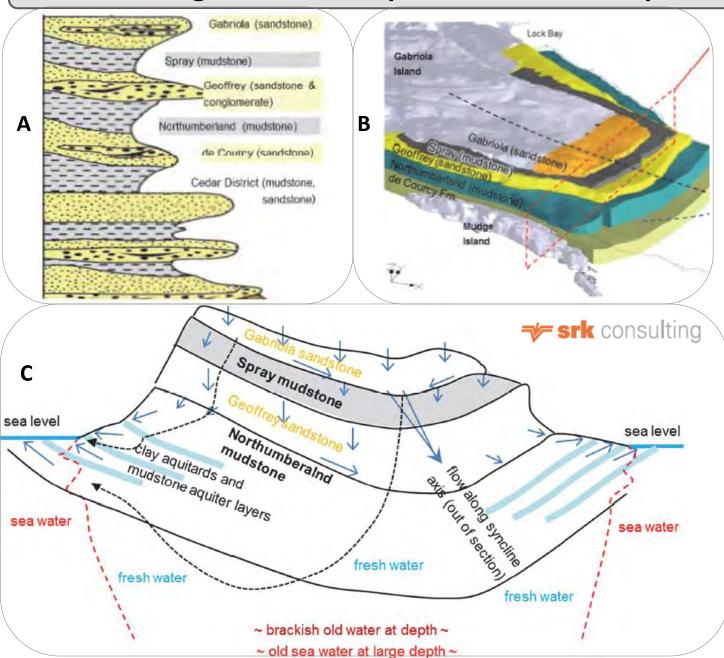
Α

- Topography maps
- Climate data
- Land cover maps
- Geological maps
- Water level
- Aquifer properties

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget: Gab conceptual model development

1. DWWP update

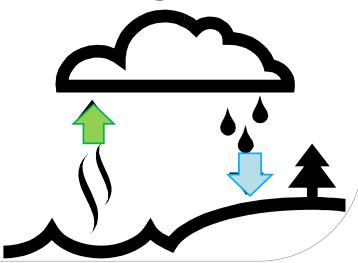
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- \rightarrow What & Why
- → How & Who


Water Budget Study

Water Budget Calculations

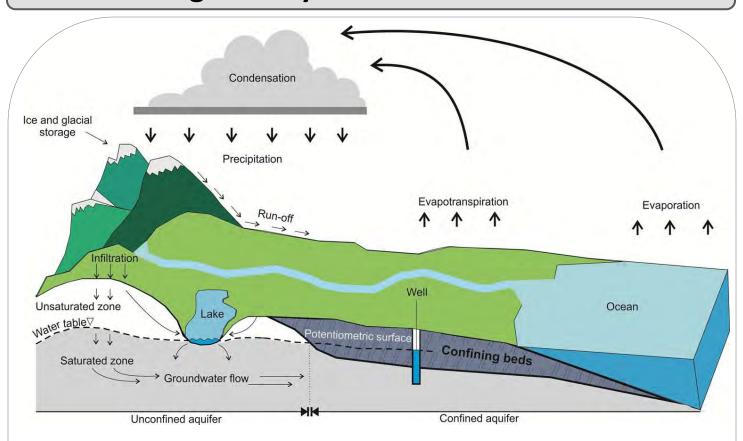
= input – output + ▽storage

(rainfall) (evaporation)

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget


- → Background
- → Overview
- → Methodology
- \rightarrow Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study

+ Inputs	- Outputs	∇ Change in storage			
rainfall	Evaporation & transpiration	Snowpack			
surface water inflow	Surface water outflow	Soil zone			
groundwater inflow	Groundwater outflow	Streams, rivers, reservoirs			
imported water	Exported water	Aquifers			

1. DWWP update

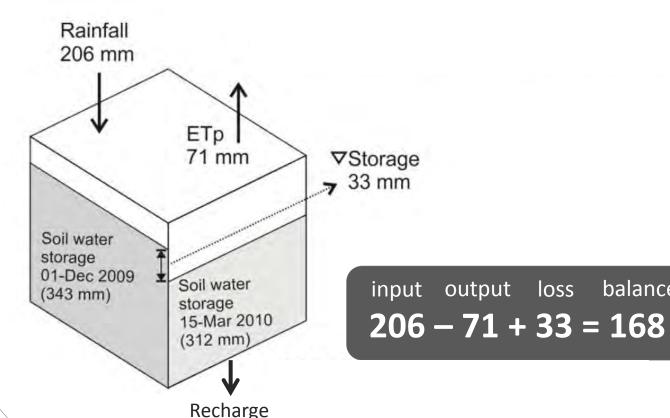
- → Program 1
- Program 2
- **Program 3**
- Program 4
- **Program 5**
- Program 6
- → Program 7

2. Water Budget

- → Background
- Overview
- Methodology
- **Findings**
- Conclusion

3. Watershed Management

- → What & Why
- → How & Who


Water Budget Study

Example.....

RECHARGE calculation

balance

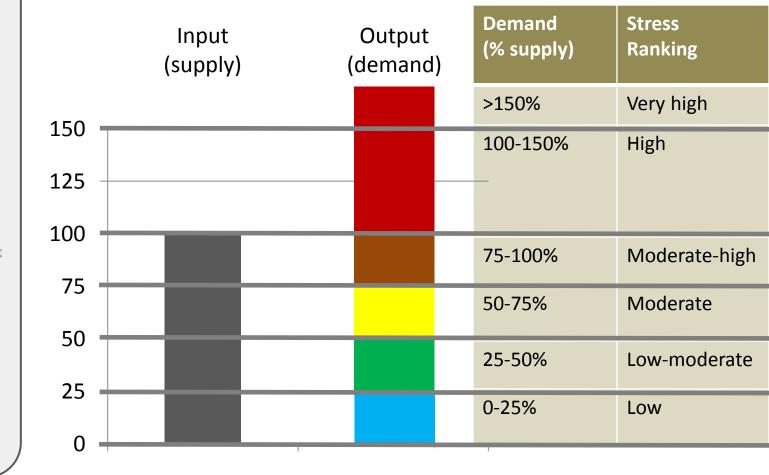
168 mm

- 1. DWWP update
 - → Program 1
 - → Program 2
 - → Program 3
 - → Program 4
 - → Program 5
 - → Program 6
 - → Program 7

2. Water Budget

- \rightarrow Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management


- → What & Why
- → How & Who

Water Budget Study

Stress Assessments: VI

Calculation of the **% of supply** that is **demand**ed (Based on Summer Conditions)

Water Budget Study

Stress Assessments: VI

Surface Water Stress (%) =
$$\frac{\text{(Outputs)}}{\text{Natural Water Supply + Storage}} \times 100$$

$$\text{(Inputs)}$$

IN: estimated river IN: Licensed storage for managed reservoirs & Average water level variation on lakes and wetlands

Watershed	Average Natural River Flow Supply (million m ³)	Storage (million m³)	Conservation Flow (10% of MAD) (million m ³)	Licensed Demand (million m ³)	Allocation Stress Level		
Nanoose Creek	0.6	0.0	0.7	0.02	120%	High	

OUT: 10% of average annual discharge (flow)

OUT: industrial, municipal, domestic, agricultural

Water Budget Study

Stress Assessments: VI

Groundwater
$$Aquifer Stress (\%) = \frac{GWout}{GWin} \times 100$$
(Inputs)

IN: recharge from rainfall + seepage from overlaying aquifer + lateral recharge

Aquifer Tag No.	Aquifer Lithology	Potential Groundwater- Surface water or Aquifer to Aquifer Interaction	MOE Obs Well	Seas. Fluc.	Long Term Fluc.	WL Trend (up or down)	Total Est. AQ. Rec. (TRin) (Rp/l + Rmb)	Est. Ann. Disch to Cr. & Down Grad Aquifer (Tc out)	Ground Water Use Estimate (ANTHout)	Total Out [TcOut + ANTH _{out}]	Stress Anal. % GW Use of the avail. AQ. Rec.	Relative Stress Assess.
			ID	(m)	(m)	U/D	(m³/yr)		(m³/yr)	(m³/yr)	(%)	Lo, Mod, Hi
219	Quadra	Nanoose Creek, Ocean	392, 393	?	?	L	1.6E+08	1.56E+07	2.8E+06	1.83E+07	11	Lo

OUT: loss to downstream creek or aquifer + human demand (abstractions)

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

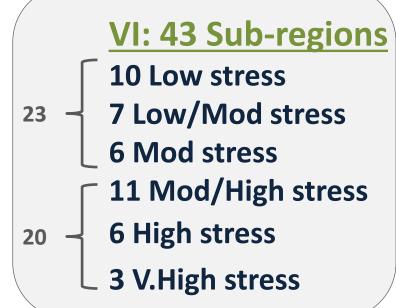
- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Findings: Water Stress Assessment

GI: 13 Sub-regions


5 deficit regions

1 deficit region

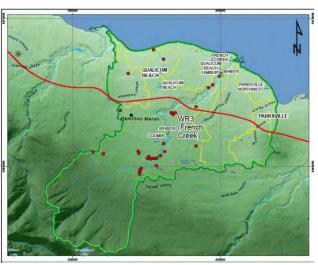
(demand > supply)

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion


3. Watershed Management

- → What & Why
- → How & Who

Findings: Vancouver Island

WR3: French Creek

- One of the smallest water regions
- area of approximately 121 km²
- Two hydrometric stations
- five climate stations
- ~68 surface water diversion licenses
- ~895 wells

WR4: Englishman River

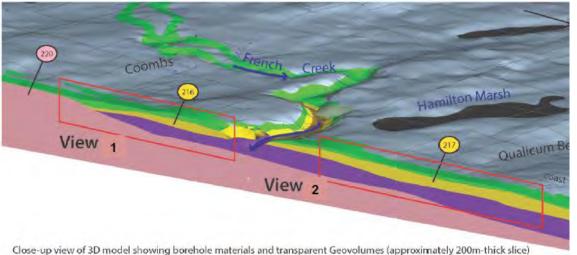
- nses
- Second largest water region
- area is approximately 322 km²
- One hydrometric station
- two climate stations
- ~52 surface water diversion licenses
- ~245 wells

1. DWWP update

- Program 1
- Program 2
- **Program 3**
- Program 4
- **Program 5**
- Program 6
- Program 7

2. Water Budget

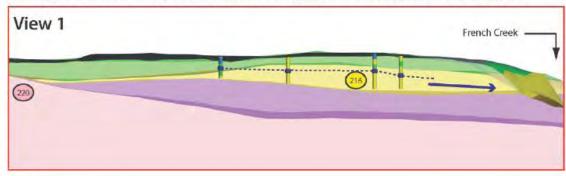
- **Background**
- Overview
- Methodology
- **Findings**
- Conclusion

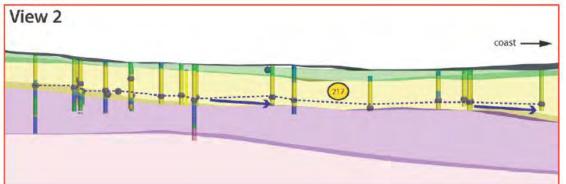

3. Watershed Management

- → What & Why
- → How & Who

Findings: Vancouver Island

3D Geomodel section from the Coombs area to Qualicum Beach and the coast (looking southwest).




WR3:

French

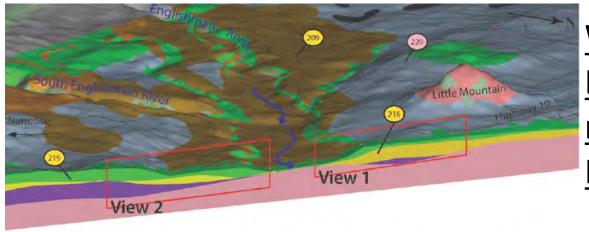
Creek

Close-up view of 3D model showing borehole materials and transparent Geovolumes (approximately 200m-thick slice)

1. DWWP update

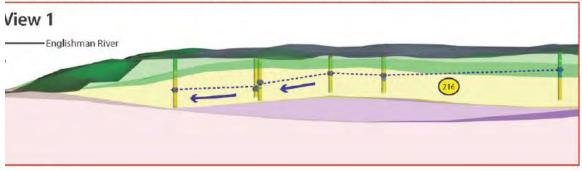
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

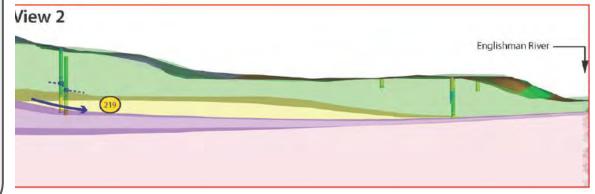
2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who




Findings: Vancouver Island

WR4: Englishman River

lose-up view of 3D model showing borehole materials and transparent Geovolumes (approximately 200m-thick slice)

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Findings: Vancouver Island

WR3: French Creek

Table 26: WR3 (FC) – Relative Surface Water Stress Assessment Results

Watershed	Average Natural River Flow Supply (million m ³)	Storage (million m³)	Conservation Flow (10% of MAD) (million m ³)	Licensed Demand (million m ³)	Allocation Stress	Stress Level
French Creek	1.40	0.11	1.75	0.10	123%	High

Surface water: high stress, French Creek

Table 30: Summary of Water Budget and Stress Analysis – WR3 (FC)

Aquifer Tag No.	Aquifer Lithology	Potential Ground Water- Surface water or Aquifer to Aquifer Interaction	MOE Obs Well	Seas. Fluc.	Long Term Fluc.	WL Trend (up or down)	Total Est. AQ. Rec. (TRin) (Rp/I + Rmb)	Est. Ann. Disch to Cr. & Down Grad Aquifer (Tc out)	Ground Water Use Estimate (ANTHout)	Total Out [TcOut + ANTH _{out}]	Stress Anal. % GW Use of the avail. AQ. Rec.	Relative Stress Assess.
			ID	(m)	(m)	U/D	(m³/yr)		(m³/yr)	(m³/yr)	(%)	Lo, Mod, Hi
220	Haslam	FC	287		9.1	D	6.4E+06	5.1E+05	2.2E+06	2.7E+06	42	Lo-Mod
216	Quadra	FC	314	1.60	3.60	D/L	4.5E+07	3.8E+07	4.1E+06	4.5E+07	100	Hi
217	Quadra	FC and Ocean	321, 325, 303	5	12	D/L	8.3E+06	2.5E+06	4.7E+06	1.1E+07	133	Hi
212	NG	Ocean	NA	NA	NA	NA	8.8E+05	0.0E+00	5.0E+05	5.0E+05	58	Mod

Groundwater: 1 low-moderate stress, 1 moderate & 2 high stress

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Findings: Vancouver Island

WR4: Englishman River

Table 36: WR4(ER) – Relative Surface Water Stress Assessment Results

Watershed	Average Natural River Flow Supply (million m³)	low Supply (million m ³) (10% of MAI		Licensed	Allocation Stress	Stress Level	Actual Demand (million m³)	Actual Stress
Englishman River	14.4	9.2	13.2	2.7	68%	Moderate	0.6	8%

Surface water: moderate stress, Englishman River

Table 40: Summary of Aquifer Stress Analysis – WR4 (ER)

Aquifer Tag No.	Aquifer Lithology	Potential Ground Water- Surface water or Aquifer to Aquifer Interaction	MOE Obs Well	Seas. Fluc.	Long Term Fluc.	WL Trend (up or down)	Total Est. AQ. Rec. (TRin) (Rp/I + Rmb)	Est. Ann. Disch to Cr. & Down Grad Aquifer (Tc out)	Ground Water Use Estimate (ANTHout)	Total Out [TcOut + ANTH _{out}]	Stress Anal. % GW Use of the avail. AQ. Rec.	Relative Stress Assess.
			ID	(m)	(m)	U/D	(m ³ /yr)	(m³/yr)	(m³/yr)	(m³/yr)	(%)	Lo, Mod, Hi
209	Quadra	Haslam	NA	NA	NA	NA	2.15E+07	8.67E+06	9.77E+06	9.77E+06	45	Lo-Mod
220	Haslam	ER	287	2.5	9.1	D	9.73E+05	1.72E+04	1.22E+06	1.22E+06	125	Hi
216	Quadra	ER	314	1.60	3.60	D/L	6.04E+06	4.00E+06	4.76E+06	4.76E+06	79	Mod. Hi
219	Quadra	Ocean, ER	NA	NA	NA	NA	1.83E+07	6.04E+06	6.05E+06	6.05E+06	33	Lo-Mod
214	NG	Ocean	NA	NA	NA	NA	6.18E+05	0.00E+00	1.40E+05	1.40E+05	23	Lo
221	Salish	Ocean, FR	NA	NA	NA	NA	2.87E+05	0.00E+00	1.75E+05	1.75E+05	61	Mod

Groundwater: 1 low, 2 lo-mod, 1 mod, 1 mod-high, 1 high stress

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Findings: Vancouver Island

WR3: French Creek recommendations:

- Observation well in aquifer 212
- Summer surface flow measurements at Morning Star
 Creek, Grandon Creek & Carrey Creek

WR4: Englishman River recommendations

- Observation wells in aquifers 209, 219 & 214 & 221
- Further study of surface groundwater interaction (EM River)
- Summer surface flow measurements at Morrison
 Creek & Swane Creek

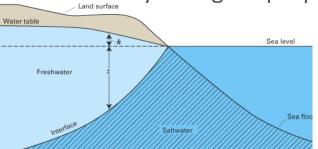
1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management


- → What & Why
- → How & Who

Findings: data gaps

Author recommendations:

- 1. Mandatory well log submission
- 2. Standardization of aquifer testing
- 3. Increase well observation network
- 4. Reactivation of **stream gauging** (WSC)
- 5. Increase saline intrusion monitoring
- 6. Improve Water Budget calculation parameters
 - Gabriola → water use data from survey
 - Hydrological properties

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

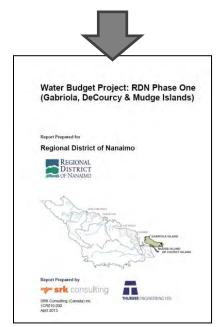
- → What & Why
- → How & Who

Conclusion

The Phase One Water Budgets provide the most comprehensive collation of information on the region's water resources that has been made available to date

- Results are purely conceptual and not intended for water management decision making or policy development
- Large degree of uncertainty due to lack of data
- Highlights data gaps and need for increased monitoring
- Stepping stone for the future!

For more details and to


download the complete reports

VISIT:

www.rdnwaterbudget.ca

Report Download

3. Integrated Watershed Management Planning

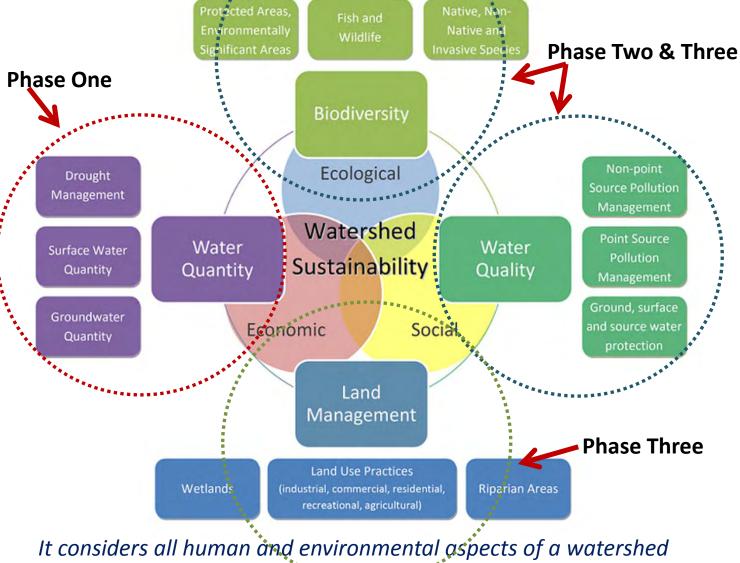
1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management


→ What & Why

→ How & Who

Integrated Watershed Management Planning

WHAT is a Integrated Watershed Management Plan?

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- Methodology
- → Findings
- → Conclusion

3. Watershed Management

→ What & Why

→ How & Who

Integrated Watershed Management Planning

WHY is it needed?

 Land use activities such as forestry, mining, agriculture, urbanization, fisheries and recreation all impact water resources

 Water resource problems are reaching global proportions; how we manage our water and how our neighbors manage theirs has an impact on all of us

 There is a wide variety of processes that affect the hydrological cycle; only managing one aspect is mismanagement. A holistic approach is the only way forward

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Integrated Watershed Management Planning

HOW? What does a planning framework include?

1. Identification of **river basin areas** (water regions)

2. Identification of water resources (surface and ground water)

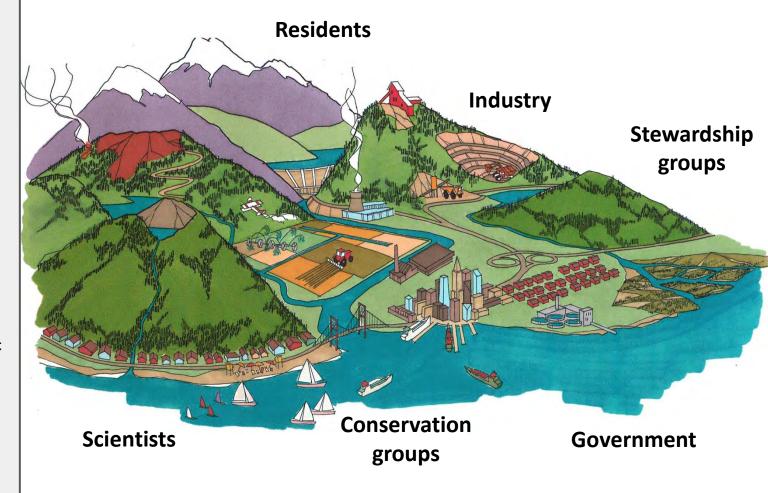
- 3. Identification of measurement parameters (chemical/ecological/social)
- 4. Identification of **protected areas** (forests, parks, fisheries)
- 5. Assess **current state** (i.e. poor, good, high) → **WHAT**
- 6. Reasons for **not achieving** good status → **WHY**
- **7.** Action plan to achieve good status/improve → HOW

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion


3. Watershed Management

- → What & Why
- → How & Who

Integrated Watershed Management Planning

WHO?

A key component to the success of these plans is public input...you live in the watershed! You know it best

Integrated Watershed Management Planning

Where do we go from here?

In your opinion:

- what are the priority watershed issues?
- who is responsible for watershed management?
- what do you think the DWWP program should focus on?

Thank You!

