

Public Information Meeting October 29th 2013 Gabriola Island, BC

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Introduction

In 2008, residents voted to establish a Drinking Water and Watershed Protection Service...

Today, we are going to talk about where we are:

- DWWP program update
- Water Budget Study review
- Integrated Watershed Management Planning

Introduction: Partnerships

Our program is founded on partnerships and collaboration

Municipalities:

The public: residents, community associations, streamkeeper groups, professionals, students.

Other governmental organizations:

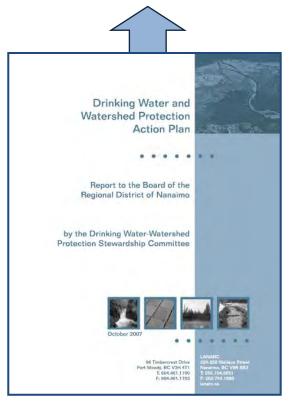
Other RDN departments:

Sustainability, Wastewater, Rec & Park

Introduction: Program development

2008

The RDN became the first regional government in British Columbia to start a Drinking Water & Watershed Protection service


2009-Present

The DWWP is guided by a **technical advisory committee** of experts from: forestry, hydrogeology, academia, community stewardship, fisheries, water services

The program is guided by the an Action Plan that outlines the key goals and objectives

7 Program Actions

1. DWWP Program Update DRINKING WATER WATERSHED PROTECTION

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 1

Public Awareness and Involvement

we practice

Free Workshops

Websites

Community Booth

Home Visits

School Program

www.RDNgetinvolved.ca

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 1

Public Awareness and Involvement

School Program: Fieldtrips

From the classroom....

To the watershed.....

2014 - field trips for Gr. 4 & 5

- Nanaimo River watershed
- Englishman River watershed

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 2

Water Resources Inventory & Monitoring

Water Budget Study

Water Map

Provincial Observation Well Network Expansion

Volunteer Well Level Monitoring

Community Watershed Monitoring

1. DWWP update

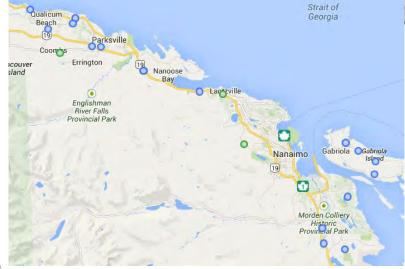
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who


DWWP update: Program 2

Water Resources Inventory & Monitoring: Highlights

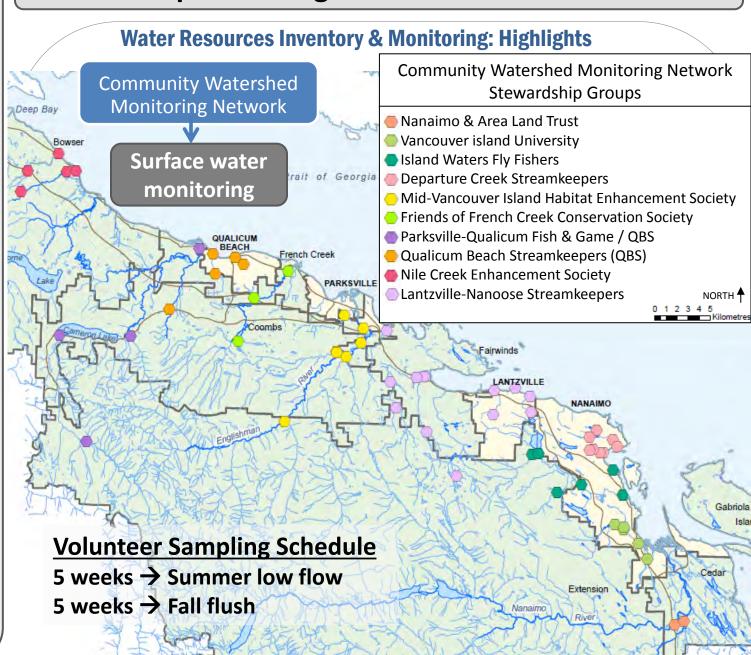
Provincial Observation Well Network Expansion

Volunteer Well Level Monitoring

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 2

1. DWWP update

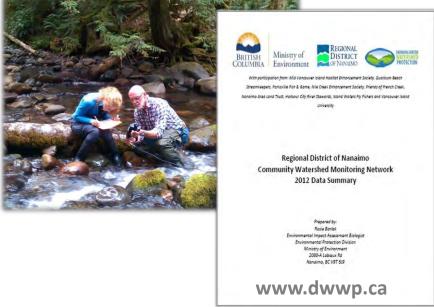
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

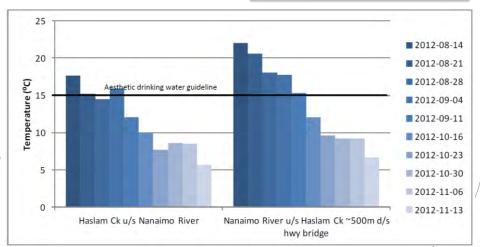
3. Watershed Management

- → What & Why
- → How & Who



DWWP update: Program 2

Water Resources Inventory & Monitoring: Highlights


Community Watershed Monitoring Network

Measurements

- Temperature
- Turbidity
- Dissolved Oxygen
- Specific Conductance

1. DWWP update

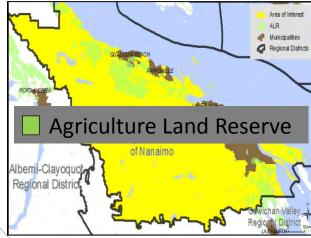
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who



DWWP update: Program 3

Land Use Planning & Development

Agricultural Water Demand Model

Yellow Point Development Permit Area

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 4

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

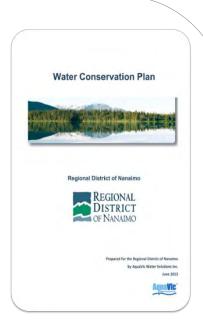
3. Watershed Management

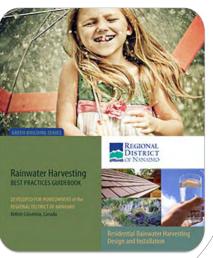
- → What & Why
- → How & Who

DWWP update: Program 5

Water Use Management

Water Conservation Plan


Toilet Replacement Rebate


Water Purveyor Working Group

Water Use Reporting Centre

Rainwater Harvesting Incentive & Guidebook

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 5

Water Use Management

Rainwater Harvesting Incentive & Guidebook

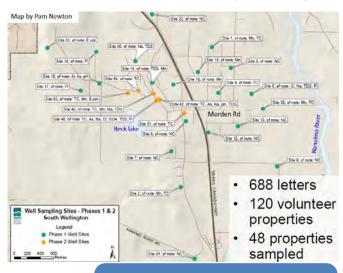
Storing winter/spring rainwater for summer usage takes pressure off aquifers & municipal supplies

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

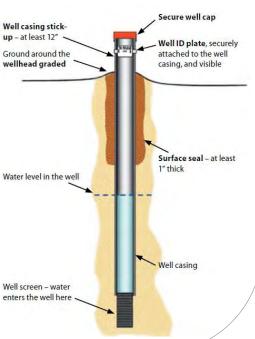
- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion


3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 6

Water Quality Management


2011 Volunteer Well Water Quality Survey

Rural Water Quality Stewardship Program

New!

No.	Rebate Item
1	Well Cap
2	Surface Seal
3	Well Casing Stick-up
4	Well deactivation
5	Water Quality Testing

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

DWWP update: Program 7

Adapting to Climate Change

- **Sustainability** ensure sustainable aquatic ecosystems with intact riparian vegetation and adequate instream flows.
- Adaptability find ways to do more in-season management of water that is based on real time data.
- **Collaboration** public processes at the watershed level that develop information and inform decision-making in a public way
- Efficiency conservation of water and more efficient use

2. Water Budget Study

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study

7 Water Regions within the RDN:

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study

• Gabriola, Mudge, & Decourcey Water Budget Project Report

Vancouver Island Water Budget Project Report

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study: Background

Project Goal

To **improve understanding** of regional water resources by:

- Identifying water stores
- Estimating <u>how much water</u> they hold
- Characterizing **how water moves** between the stores
- Identifying water stores <u>under stress</u>

Justification

The Water Budget Project was specifically developed to.....

✓ Meet the goal of the DWWP program:

[to ensure that we have a sufficient, safe and sustainable supply of water]

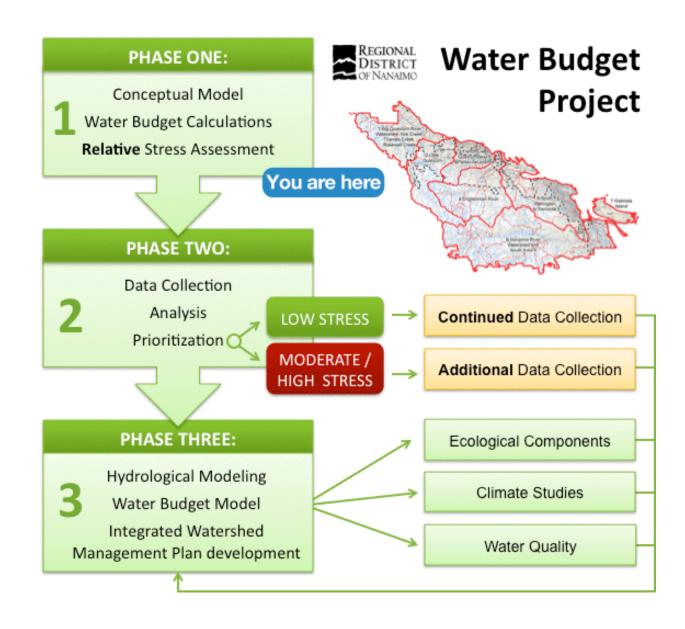
✓ Address the direction of the 2010 Snapshot Report:

[to ensure sufficient clean water for human, environmental, and economic needs]

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study: Project overview

- 1. DWWP update
 - → Program 1
 - → Program 2→ Program 3
 - → Program 4
 - → Program 5
 - → Program 6
 - → Program 7
 - -> Program
- 2. Water Budget

 → Background
 - → Overview
 - → Methodology
 - → Findings
 - → Conclusion
- 3. Watershed Management
 - → What & Why
 - → How & Who

Water Budget Study: methodology

Desk study:

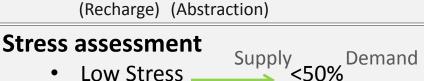
2.

3.

5.

- resource mapping
 - Data compilation

- Data collection:
 - Water level monitoringPump tests
 - Geological logging
 - Geological logging



- Conceptual model development
 Based on physical characteristics
 - Current scientific understanding

- 4. Water budget calculation

 = Supply Demand
 - **1**

- Low Stress ———— <50%
 Moderate Stress —— >50%
- High Stress >100%

1. DWWP update

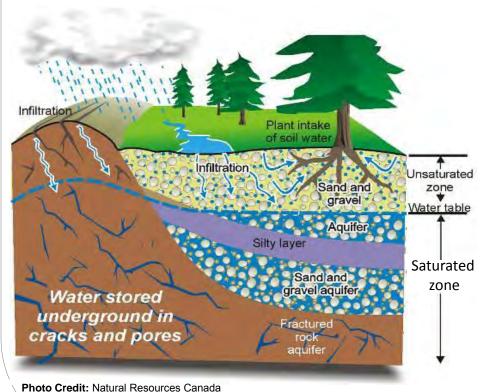
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who



Water Budget Study: methodology

Conceptual model development

Example.....

Groundwater flow

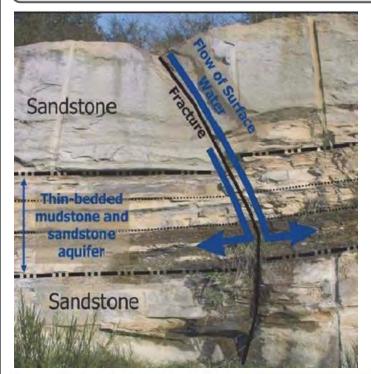
Water in rock fractures

Water between grains

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

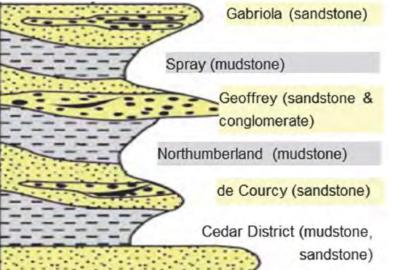
2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

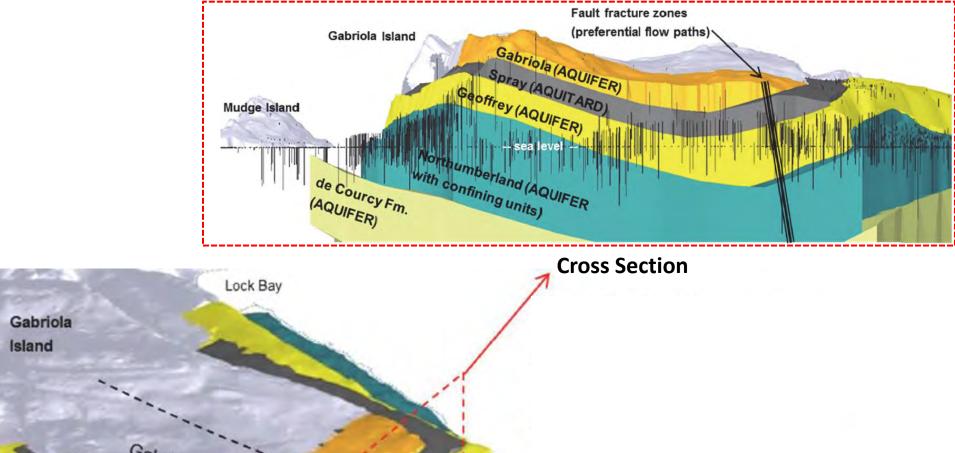
3. Watershed Management

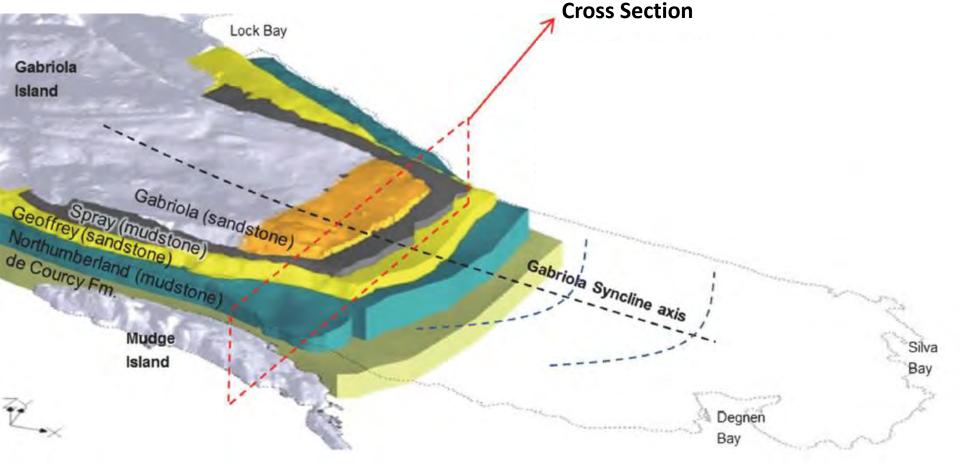
- → What & Why
- → How & Who

Water Budget: Gab conceptual model development


Geological Logging

- Thickness of strata
- Hydraulic characteristics


Fractures: low porosity, high Ks


Matrix: high porosity/low Ks

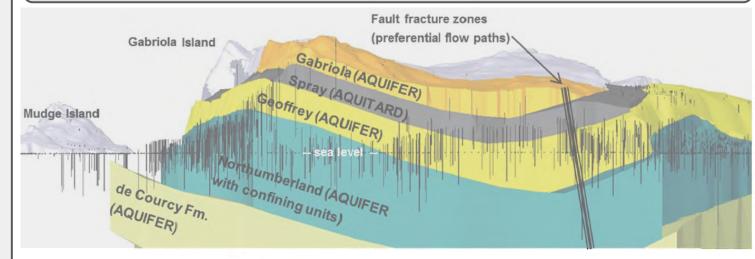
Orientation of fractures

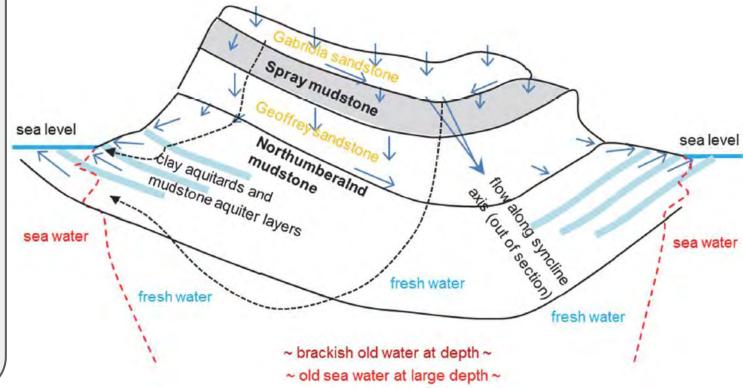
- →Thick layer, visible cliff tops
- → Visible cliff bottoms
- → Thick layer, lower elevations
- → Visible along shores /sea bed
- → Deep below Gabriola
- → Visible on Mudge

1. DWWP update

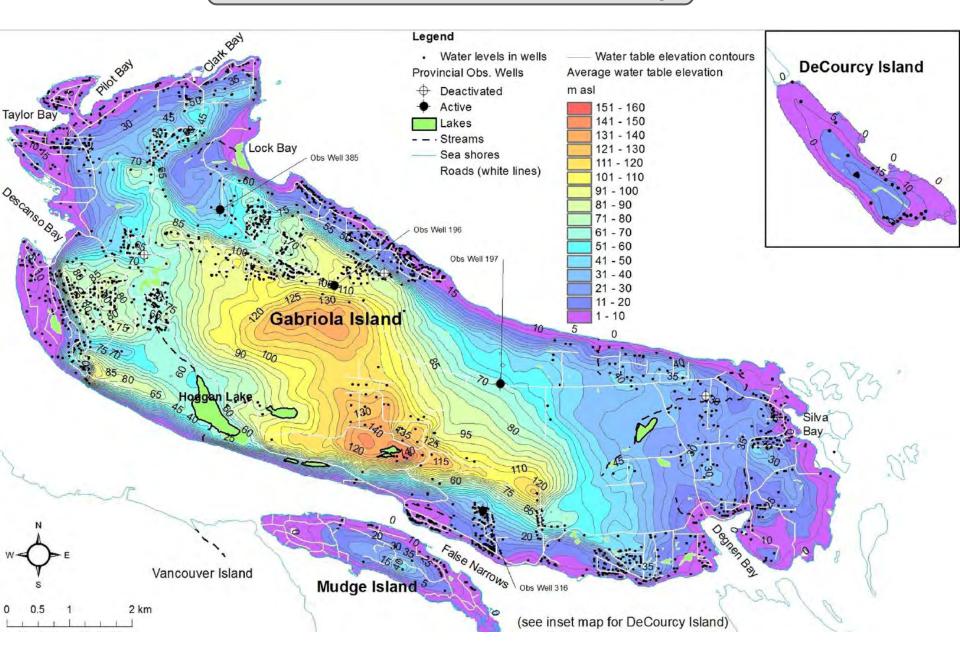
- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget


- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion


3. Watershed Management

- → What & Why
- → How & Who



Water Budget: VI Conceptual model development

Water Level Contour Map

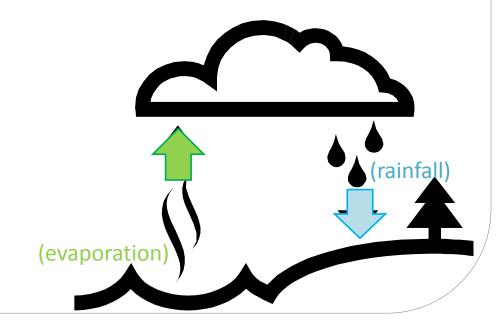
1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management


- → What & Why
- → How & Who

Water Budget Study

Water Budget Calculations

- 1. DWWP update
 - → Program 1
 - → Program 2
 - → Program 3
 - → Program 4
 - → Program 5
 - → Program 6
 - → Program 7
- 2. Water Budget
 - → Background
 - → Overview
 - → Methodology
 - → Findings
 - → Conclusion
- 3. Watershed Management
 - → What & Why
 - → How & Who

Water Budget Study

Stress Assessment Calculation

Recharge

STRESS LEVEL

LOW: <50%

MOD: >50%

HIGH: >100%

Residential Commercial Agricultural

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Water Budget Study

Stress Assessment Calculation

Input:

Recharge

10% of rainfall -lower limit

25% of rainfall –upper limit

Recharge is highly spatially variable and dependent on:

- Rainfall
- Soil type & soil zone thickness
- Rock type

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

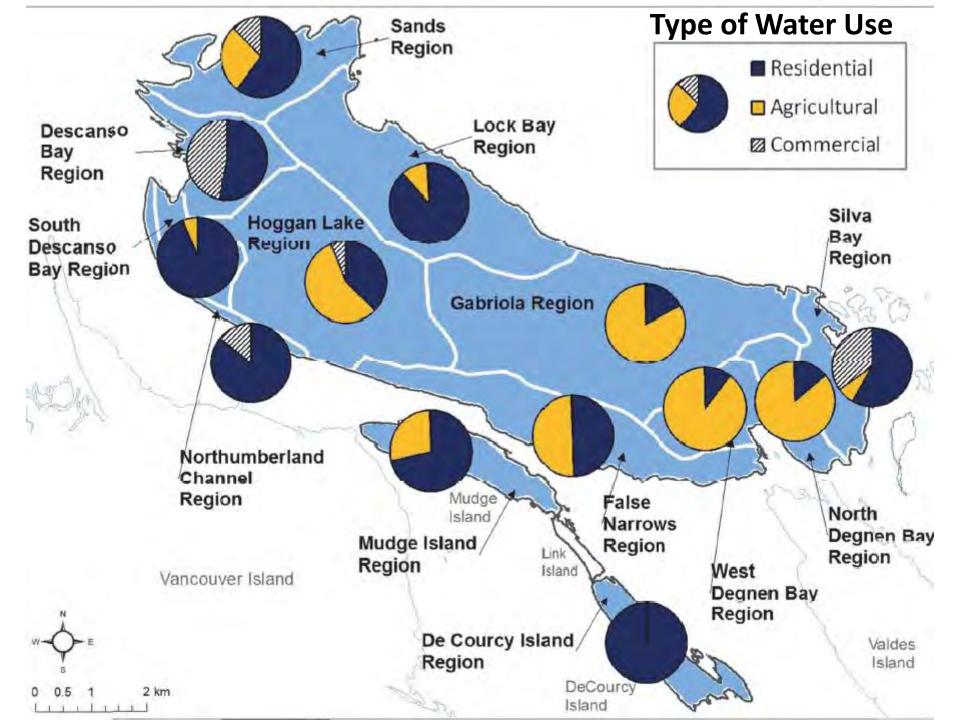
Water Budget Study

Stress Assessment Calculation

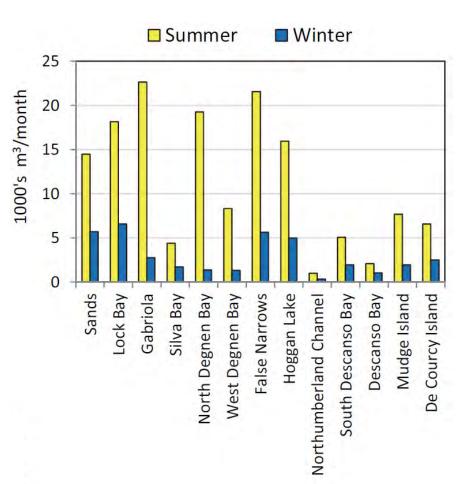
Output:

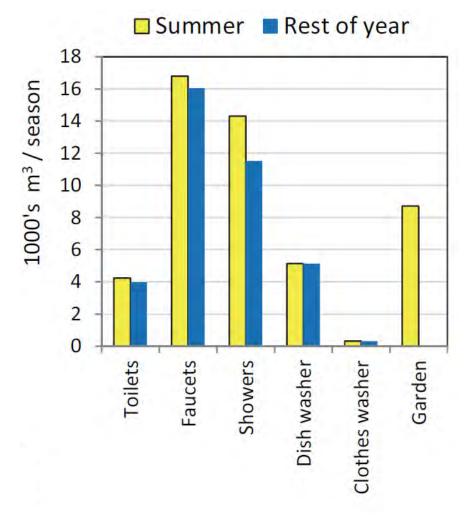
Residential Demand

survey respondents (10.8%)


Commercial Demand

- Survey respondents
- Daily max industrial water demands




Agricultural Demand

- Survey respondents
- Max licensed allocation (farm type)

Seasonal Water Use

Residential Water Use Type

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Findings: Water Stress Assessment

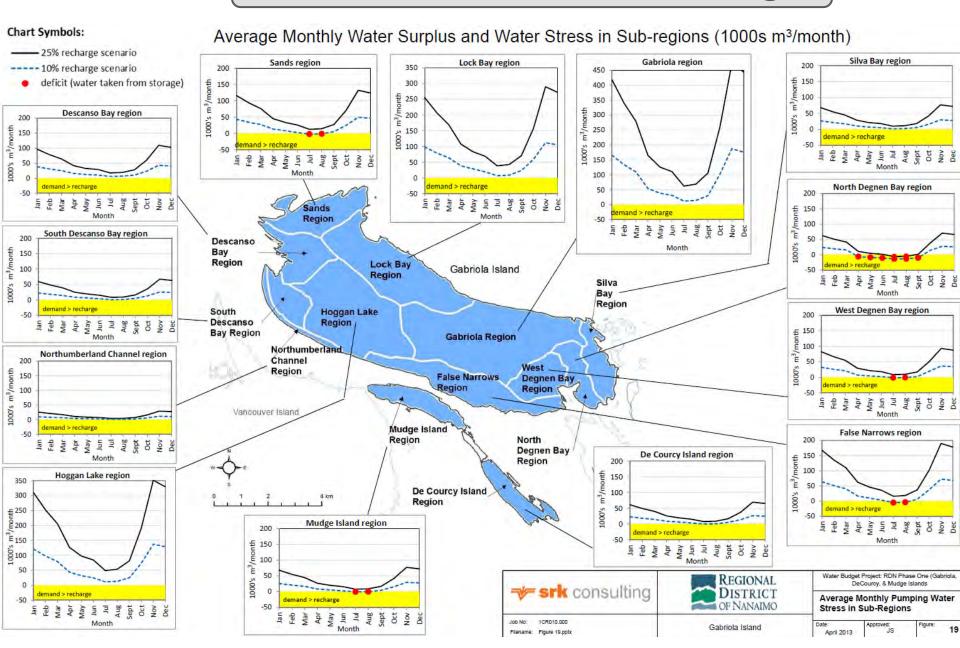
10% recharge scenario: lower limit

→ 4 deficit regions July - Aug

Sands, West Degnen Bay, False Narrows & Mudge

→ 1 deficit region Apr - Sept

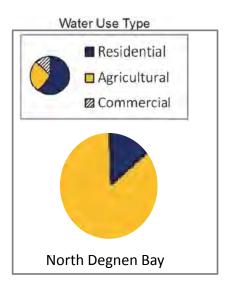
North Degnen Bay


25% recharge scenario: upper limit

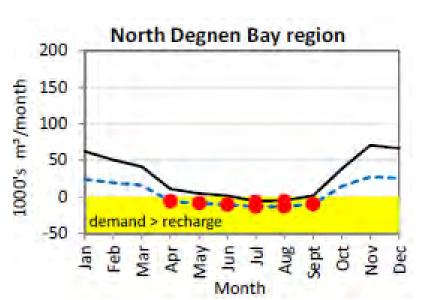
→ 1 deficit region Jun - Aug
North Degnen Bay

demand > supply

Water Deficit: Demand > Recharge



	Sub-regions		Monthly Pumping Water Stress (Groundwater Demand / Recharge) % Annual												
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(%)	
rio	Sands	11	14	17	37	50	82	121	112	63	19	10	10	27	1
	Lock Bay	6	8	9	16	21	42	67	62	25	10	6	6	14	
	Gabriola	2	2	2	26	33	41	64	60	40	3	1	2	12	STRESS LEVEL
	Silva Bay Region	4	5	6	13	28	43	67	62	33	9	5	5	13	LOW: <50%
scenario	North Degnen Bay	5	7	8	154	197	231	364	338	230	9	5	5	64	
	West Degnen Bay	4	5	6	49	62	77	121	112	78	6	4	4	23	MOD: >50%
rge	False Narrows	8	10	12	45	58	86	136	126	71	13	7	8	27	HIGH: >100%
10% recharge	Hoggan Lake	4	5	6	21	27	38	56	52	33	6	3	4	12	
% re	Northumberland Channel	3	4	4	7	13	23	37	34	14	5	3	3	7	1
10%	South Descanso Bay	8	10	12	18	23	49	78	72	28	13	7	7	17	
	Descanso Bay	2	3	4	6	10	15	23	21	11	4	2	2	5	Residential
	Mudge Island	7	8	10	33	43	70	110	102	49	11	6	7	21	37% increase
H	DeCourcy Island	10	12	15	22	28	61	97	90	33	16	9	9	21	37/0 111016036
															Commercial
	Sands	5	5	7	15	20	33	48	45	25	7	4	4	11	increase
	Lock Bay	2	3	4	7	8	17	27	25	10	4	2	2	6	Agricultural
IJ	Gabriola	1	1	1	11	13	16	26	24	16	1	1	1	5	increase
Lio	Silva Bay Region	2	2	3	5	11	17	27	25	13	4	2	2	5	
scenario	North Degnen Bay	2	3	3	62	79	92	146	135	92	3	2	2	26]
	West Degnen Bay	2	2	2	20	25	31	48	45	31	3	1	2	9	
charge	False Narrows	3	4	5	18	23	34	54	50	29	5	3	3	11	
che	Hoggan Lake	2	2	2	8	11	15	22	21	13	3	1	1	5	
25% red	Northumberland Channel	1	1	2	3	5	9	15	14	6	2	1	1	3	
25	South Descanso Bay	3	4	5	7	9	20	31	29	11	5	3	3	7	
	Descanso Bay	1	1	1	2	4	6	9	9	4	2	1	1	2	
	Mudge Island	3	3	4	13	17	28	44	41	20	4	2	3	9	
	DeCourcy Island	4	5	6	0	11	24	30	36	13	6	3	4	8	1


How reliable are the stress assessments?

Example: North Degnen Bay

- Assumes ~85% of water use in North Degnen is agricultural
- High agricultural demand April-Sept (irrigation period)
- Agricultural demand values assume maximum licensed volume of water across the entire irrigation period
- Low total demand/km² compared to other sub-regions
- % recharge assumed uniform year round

Water Budget Study: Conclusion

Author recommendations:

- ✓ Improved estimates of hydraulic parameters (pump tests)
- ✓ Increased water level monitoring (Mudge & DeCourcy)
- ✓ Monitoring of rainfall and water level rise
- ✓ Increased monitoring of coastal wells for Saline intrusion
- ✓ Water budget calculation parameters need improved accuracy (survey #s, commercial & agricultural use is unknown, surface water!)

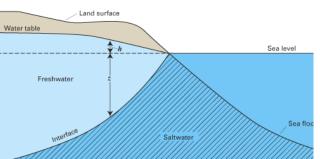
1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management


- → What & Why
- → How & Who

Findings: data gaps

Study recommendations:

- 1. Mandatory well log submission
- 2. Standardization of aquifer testing
- 3. Increase **well observation** network
- 4. Reactivation of **stream gauging** (WSC)
- 5. Increase saline intrusion monitoring
- 6. Improve Water Budget calculation parameters

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

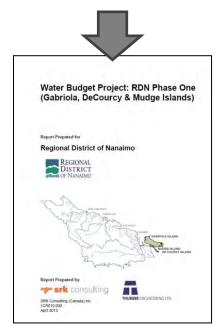
- → What & Why
- → How & Who

Conclusion

The Phase One Water Budgets provide the most comprehensive collation of information on the region's water resources that has been made available to date

- Results are purely conceptual and not intended for water management decision making or policy development
- Large degree of uncertainty due to lack of data
- Highlights data gaps and need for increased monitoring
- Stepping stone for the future!

For more details and to


download the complete reports

VISIT:

www.rdnwaterbudget.ca

Report Download

3. Integrated Watershed Management Planning

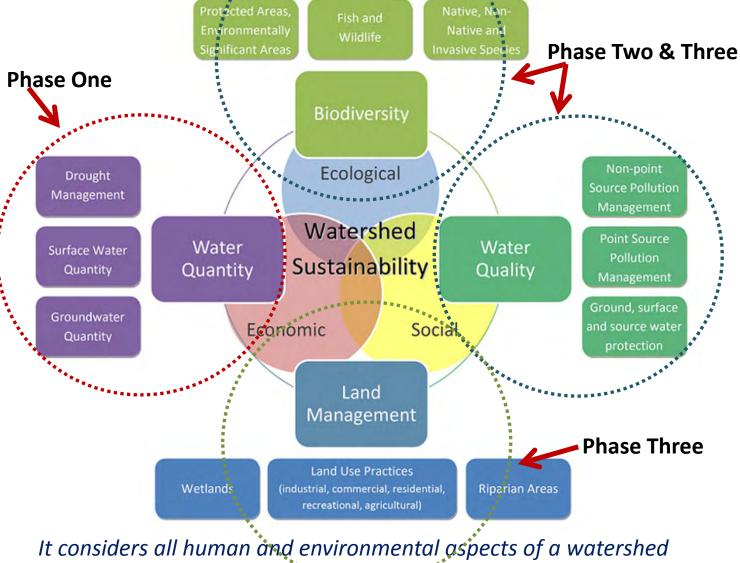
1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management


→ What & Why

→ How & Who

Integrated Watershed Management Planning

WHAT is a Integrated Watershed Management Plan?

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- Methodology
- → Findings
- → Conclusion

3. Watershed Management

→ What & Why

→ How & Who

Integrated Watershed Management Planning

WHY is it needed?

 Land use activities such as forestry, mining, agriculture, urbanization, fisheries and recreation all impact water resources

 Water resource problems are reaching global proportions; how we manage our water and how our neighbors manage theirs has an impact on all of us

 There is a wide variety of processes that affect the hydrological cycle; only managing one aspect is mismanagement. A holistic approach is the only way forward

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion

3. Watershed Management

- → What & Why
- → How & Who

Integrated Watershed Management Planning

HOW? What does a planning framework include?

1. Identification of **river basin areas** (water regions)

2. Identification of water resources (surface and ground water)

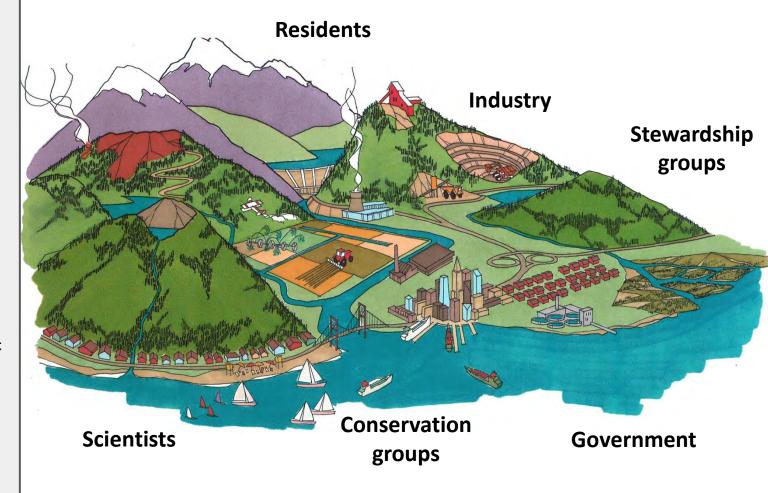
- 3. Identification of measurement parameters (chemical/ecological/social)
- 4. Identification of **protected areas** (forests, parks, fisheries)
- 5. Assess **current state** (i.e. poor, good, high) → **WHAT**
- 6. Reasons for **not achieving** good status → **WHY**
- **7.** Action plan to achieve good status/improve → HOW

1. DWWP update

- → Program 1
- → Program 2
- → Program 3
- → Program 4
- → Program 5
- → Program 6
- → Program 7

2. Water Budget

- → Background
- → Overview
- → Methodology
- → Findings
- → Conclusion


3. Watershed Management

- → What & Why
- → How & Who

Integrated Watershed Management Planning

WHO?

A key component to the success of these plans is public input...you live in the watershed! You know it best

Integrated Watershed Management Planning

Where do we go from here?

In your opinion:

- what are the priority watershed issues?
- who is responsible for watershed management?
- what do you think the DWWP program should focus on?

Thank You!

