Enos Lake Water Quality Monitoring Program

2021 Annual Report

Prepared for: FW Enterprises Ltd. c/o Seacliff Properties 305-1788 West 5th Avenue Vancouver, BC V6J 1P2

Prepared by:

Thea Rodgers, B.Sc. BC Conservation Foundation #105-1885 Boxwood Road Nanaimo, BC V9S 5X9

Executive Summary

From February to November 2021, the British Columbia Conservation Foundation (BCCF) conducted water quality sampling in Enos Lake based on a monitoring schedule and sampling procedures outlined in the *Enos Lake Protection and Monitoring Program* (ELPMP).

Data collection was completed with volunteer assistance from the *Friends of Enos Lake*, a dedicated local stewardship group interested in the conservation and protection of the lake and its ecosystem.

Results were sent to a professional limnologist for analysis and review. Sample results indicated that chlorophyll-*a* was within the target, with no significant increase above baseline levels on dates of sample collection. One quarter of the total phosphorous samples (3/12) surpassed the target value ($\leq 12 \mu g/L$) in February, May, and Augustof 2021; however, the annual average was below target. Dissolved oxygen results met the target for the epilimnion ($\geq 5 m g/L$) in all months, but did not meet the target for the hypolimnion ($\geq 2 m g/L$) in May or August 2021 (and likely into early fall). This occurred from 2017 – 2020 as well, and is thought to be a natural condition of Enos Lake; however, the severity of oxygen depletion in the hypolimnion has increased since 2017 and, concerningly, was noted to extend halfway up into the thermocline in August of 2021. The progression of anoxia beyond the hypolimnion should be closely monitored going forward.

A webpage for Enos Lake data and reports was established in 2021 in partnership with the Mid-Vancouver Island Habitat Enhancement Society, per recommendations of the 2020 final report. This public webpage can be found at <u>https://www.mvihes.bc.ca/current-initiatives/enos-lake</u>.

2021 marks the final year of "base" annual monitoring as per the ELPMP. In 2022, the ELPMP recommends adhering to the 5-year monitoring and water quality protection plan through an expanded monitoring protocol to include additional assessment of metals/hardness, PAHs in lake sediment, and *E. coli*. This sampling is intended to examine 5-year trends, review the monitoring program, and provide feedback for ongoing sustainable watershed management.

Additional suggestions for data accuracy include implementing a QA/QC program to increase confidence in field data collection methods and lab analysis results (e.g., duplicate and field blank samples, duplicate YSI readings on ascent & descent of probes), and additional Secchi readings during the summer, when the lake is stratified (March – November) with at least one or two additional winter readings (December – March).

Table of Contents

Background3
1.0 Introduction
2.0 Methods
2.1 Scope of Work5
2.2 Data Collection5
2.3 Analysis
3.0 Results7
3.1 Air temperature and precipitation7
3.2 In situ Field Parameters9
3.3 Laboratory Samples11
3.4 Invasive Species11
4.0 Discussion
4.1 Air temperature and precipitation13
4.2 In situ Field Parameters
4.3 Laboratory Samples14
4.4 Invasive Species16
5.0 Recommendations16
References
Appendix 119
Laboratory results19
Appendix 220
Limnologist's Report

List of Figures

Figure 1: Enos Lake sampling locations (PGL 2016)4
Figure 2: Mean daily air temperature and precipitation for Qualicum Beach Airport, 2016-2021

List of Tables

Table 1: Proposed ELPMP Monitoring Schedule for 2021 (PGL 2016)	5
Table 2: Summary of Water Quality Monitoring Targets for data collected in 2021 (PGL 2016)	7
Table 3: Mean monthly air temperature and precipitation for the Qualicum Beach Airport, 2016-2021	8
Table 4: Secchi Depth Summary from Enos Lake 2021 Water Quality Monitoring	9
Table 5: Summary of in situ Results from Enos Lake 2021 Water Quality Monitoring	10
Table 6: Summary of Laboratory Results from Enos Lake 2021 Water Quality Monitoring	12
Table 7: Summary of trophic status classification based on chlorophyll- <i>a</i> and total phosphorous	15

Background

An annual water quality monitoring program for Enos Lake was established in 2017 by the British Columbia Conservation Foundation (BCCF), per the management recommendations of the *Enos Lake Protection and Monitoring Plan* (ELPMP) (PGL 2016).

This report summarizes the monitoring of select chemical and physical water quality parameters to evaluate seasonal water quality and productivity status of Enos Lake in 2021, with comparison to established water quality targets. This report also includes suggestions for reporting as outlined in the ELPMP, including:

- A summary of work performed, including dates, individuals, weather conditions, methods, QA/QC protocols, and any challenges encountered during the work.
- A presentation of the water quality results compared against targets in the ELPMP.
- A summary of preventative actions taken with respect to aquatic invasive species in the past year (e.g. signage, educational materials for residents or visitors, etc.).
- Any anecdotal observations related to Enos Lake ecology, including but not limited to aquatic invasive species.
- An interpretation of the results of the program for the past year, conducted by an experienced, qualified limnologist provided in report form, including but not limited to input provided for stormwater management practices or new phases of construction (included as an appendix).
- Recommendations for augmentation to the program, if relevant.
- Laboratory certificates and raw data for the year, as appendices.

1.0 Introduction

Enos Lake is a small, relatively productive lake located on Vancouver Island's Nanoose peninsula (Fig. 1). The lake is approximately 18 ha and surrounded by nearby ponds and wetlands, supporting a wide diversity of birds and aquatic life. The lake is approximately 12 metres at its deepest point, and drains into Enos Creek via a weir established at its north outlet since 1956 (PGL 2016).

Enos Lake is most well-known for the presence of a unique benthic and limnetic stickleback species-pair, protected under the federal Species at Risk Act (SARA). The pair were designated as Threatened in 1988, then re-classified and split into two species separately listed as Endangered in 2002 and renewed in 2012 (Environment Canada 2011). Recent research has suggested the species pair is collapsing due to habitat changes caused by crayfish and/or changes in lake productivity (Taylor et al. 2006; Taylor & Piercey 2018).

Enos Lake undergoes thermal stratification in the summer months, resulting in a warm surface water layer (epilimnion); this layer is separated from the cooler, deeper water (hypolimnion) by a narrow zone of rapid temperature change (thermocline). Solar radiation and wind movement at the water's surface work together to warm the uppermost layer, while the water at depth receives very little sunlight and remains cool and dark. Density differences prevent these two layers from mixing during the summer months.

From fall through early spring, as air temperatures drop and the amount of solar radiation decreases, the warm surface waters gradually cool and densify. Denser water settles down into the hypolimnion and initiates mixing throughout the entire water column, a process known as fall turnover.

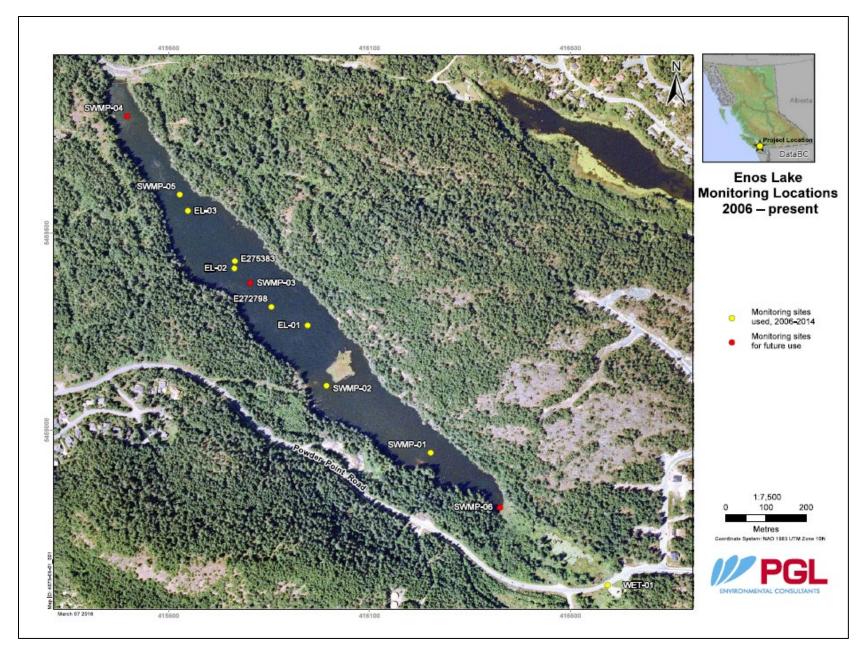


Figure 1: Enos Lake sampling locations (PGL 2016).

2.0 Methods

2.1 Scope of Work

BCCF was contracted to conduct water quality sampling as described in the ELPMP (Table 1) in 2021. Sampling occurred quarterly and field crews consisted of a BCCF biologist with an additional volunteer or staff member. Extra safety precautions had to be taken due to COVID-19, including social distancing, equipment sanitization, and use of face coverings in indoor spaces. Water samples were collected from site SWMP-03 (Fig. 1), located at the deepest part of the lake. The site was accessed by boat with a small electric motor.

	2021											
Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Dissolved Oxygen		F			F			F			F	
Temperature		F			F			F			F	
Redox potential		F			F			F			F	
pH		F			F			F			F	
Secchi Depth		F			F			F			F	
Chlorophyl a		L			L			L			L	
Phosphorhus		L			L			L			L	
E Coli												
Metals												
Hardness												
PAH												
L = Water sample from three depths at SWMP-03 F = 1m in situ profiles from SWMP-03 Legend E = Five samples in 30 days, from SWMP-03 and any two shoreline locations.												
		samples in ce sedime		-	MP-03 SWMP-06	and SWN	1P-04					

Table 1: Proposed ELPMP Monitoring Schedule for 2021 (PGL 2016).

2.2 Data Collection

FIELD EQUIPMENT

The following equipment was utilized for field sampling:

- YSI Professional Plus QUATTRO handheld multi-parameter water quality sonde with probes for Galvanic Dissolved Oxygen, Temperature/Conductivity, pH, and ORP
- Calibration solutions for YSI probes
- 1 L Van Dorn water sampler
- Sample bottles, supplied by ALS Laboratories (Burnaby, BC)
- Chain of Custody (COC) forms, supplied by ALS
- Cooler with ice
- Secchi disk
- Field notebook
- Safety kit (waders, gloves, Personal Flotation Devices (PFDs))
- 10-ft Zodiac with an electric outboard motor

IN SITU FIELD PARAMETERS

In situ water quality parameters were collected once per quarter, beginning in February at site SWMP-03. The YSI handheld sonde was calibrated by a BCCF technician immediately prior to each sampling date and calibration records kept for reference. Results were recorded at 1 m intervals throughout the water column, down to 10-12 m (total site depth). An occasional reading was taken every 0.5m in the thermocline during cases of a steep temperature transition. Parameters included:

- Temperature (°C)
- Dissolved oxygen (mg/L and %)
- pH
- Conductivity (µS/cm)
- Redox potential (mV)

Weather and surface observations were noted on each sampling date. A water clarity measurement was recorded once per quarter using a Secchi disk, between the hours of 10am – 4pm; sunglasses were removed and observations made on the shady side of the boat. The *Friends of Enos Lake* (FoEL) undertook ten additional dates of Secchi monitoring between February – August of 2021, using a non-motorized watercraft for site access.

LABORATORY SAMPLES

Grab samples were collected at 1, 5, and 9.5 or 10 m depths at site SWMP-03 using a 1 L Van Dorn sampler. Samples were collected for chlorophyll-a (unfiltered), orthophosphate (raw water) and total phosphorous (preserved H₂SO₄) analyses.

The Van Dorn was rinsed with surface water before each sampling event, and allowed to remain at depth (5 and 9.5 m) for 10 seconds before retrieving samples to ensure mixing within the sampling tube. Sample bottles were pre-labelled and handled to prevent contamination of the interior cap or bottle.

Water sampling procedures followed guidelines provided by ALS, in addition to guidelines outlined in the *Ambient Freshwater and Effluent Sampling Manual* (BC Ministry of Water, Land and Air Protection 2003) and those provided in the ELPMP (PGL 2016). Water samples were transferred to the bottles provided from ALS and packed in a cooler with ice and completed COC form. Samples were immediately shipped to the ALS lab in Burnaby for analysis.

INVASIVE SPECIES

Incidental monitoring for invasive species occurred concurrently with water sampling, through visual observation and assessment of emergent/shallow submerged vegetation seen while travelling to the sample site, and any plant matter on the boat anchor.

HISTORICAL AIR TEMPERATURE AND PRECIPITATION

Data was retrieved from Environment Canada's historical weather database for the Qualicum Beach Airport weather station (Meteorological Service of Canada - Climate ID 1026562), for the period of January 1, 2016 to December 12, 2021. The weather station is located approximately 20 km from the Nanoose peninsula. Data was summarized by daily maximum, mean, and minimum values.

2.3 Analysis

An accredited facility for conducting water quality testing, ALS Laboratories (Burnaby, BC) performed all lab analyses including Quality Assurance/Quality Control (QA/QC) for assessment methods. Results were received by BCCF within one to three weeks of sample submission (Appendix 1).

Data were compiled using MS Excel and summarized using descriptive analyses. All results were sent to professional limnologist John Deniseger for further review and comparison to water quality guidelines and data previously collected for Enos Lake. Deniseger's analysis is summarized in "*Enos Lake Protection and Monitoring Program: Review of 2021 Water Quality Data*" (Appendix 2).

3.0 Results

Water quality targets as listed in the ELPMP are summarized in Table 2. Each parameter is discussed in detail in Deniseger (2021) (Appendix 2).

	Parameter (units)	Water Quality Target			
	Secchi depth (m)	None - supporting context only			
parameters	Dissolved Oxygen (mg/L)	≥5 mg/L epilimnion ≥2 mg/L hypolimnion			
oars	Conductivity (µS/cm)	None - supporting context only			
itu	Temperature (°C)	None - supporting context only			
In situ	рН	None - supporting context only			
	Redox (mV)	None - supporting context only			
Lab result	Total phosphorous	≤12 μg/L			
ца е́	Chlorophyll-a	Avoid any increase ¹			

Table 2: Summary of Water Quality Monitoring Targets for data collected in 2021 (PGL 2016).

¹ Chlorophyll-*a* baseline data for Enos Lake (2009-2013) ranges from 0.17 to 19.8 μ g/L; values are typically in the range of 4-5 μ g/L (PGL 2016).

3.1 Air temperature and precipitation

Mean daily air temperature and precipitation data is summarized in Figure 2. A comparison of the mean monthly air temperature and precipitation for the summer period (June – September) is provided in Table 3.

Mean monthly air temperature in June of 2021 (17.8 °C) was approximately 3 degrees warmer than in June of 2020 (14.9 °C; Table 3). Maximum daily air temperature (28.4 °C on June 28, 2021) was just under 5 degrees warmer than the previous recorded maximum (23.7 °C on June 18, 2018) (Fig. 2). This indicates it was a very hot June compared to past years.

Relative to the 5-year (2016-2020) mean monthly average, precipitation in 2021 was 124% (June), 3% (July), 40% (August), and 200% (September) (Table 3). This indicates it was a dry mid-summer and wet early fall relative to past years.

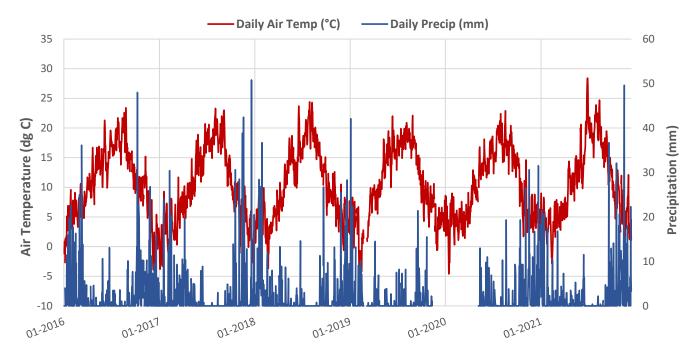


Figure 2: Mean daily air temperature and precipitation for the Qualicum Beach Airport, 2016-2021 (Environment Canada 2021).

Table 3: Mean monthly air temperature and precipitation for the Qualicum Beach Airport, Jun-Sep
2016-2021 (Environment Canada 2021).

xx Warmest mean monthly air temperature (since 2016)										
Mean monthly precip < 0.5 mm	Me	an monthly pre	cip 0.5 ≤ 1.0 mm	Mea	n monthly preci	p > 1.0 mm				
JUNE										
	2016	2017	2018	2019	2020	2021				
Air temp (°C)	15.8	15.3	15.2	16.1	14.9	17.8				
Precipitation (mm)	1.2	0.6	1.2	0.4	1.8	1.3				
JULY										
	2016	2017	2018	2019	2020	2021				
Air temp (°C)	17.9	18.0	19.3	17.8	17.6	19.8				
Precipitation (mm)	0.5	0.0	0.2	0.9	0.5	0.0				
AUGUST										
	2016	2017	2018	2019	2020	2021				
Air temp (°C)	18.7	19.2	18.8	18.4	17.1	18.9				
Precipitation (mm)	0.5	0.1	0.0	0.3	1.2	0.2				
SEPTEMBER	SEPTEMBER									
	2016	2017	2018	2019	2020	2021				
Air temp (°C)	13.6	15.5	14.0	14.6	15.9	14.4				
Precipitation (mm)	1.5	0.7	3.0	2.5	1.0	3.5				

3.2 In situ Field Parameters

A summary of *in situ* field parameters is provided in Tables 4 and 5. Parameters of interest are discussed here, while each parameter is discussed in detail in Deniseger (2021) (Appendix 2).

WATER CLARITY

Water clarity dropped to a minimum of 0.8 m in February before rebounding >3.0 m into May-June. A slight decrease occurred in early July (2.6 m), before increasing again to a maximum of 4.0 m in mid-August. After the second peak in mid-August, clarity gradually decreased into November (Table 4).

TEMPERATURE

Water temperature varied widely with the season and the lake's thermal stratification. The lake was relatively isothermal in February and November, but exhibited strong thermal stratification in May and August. The maximum recorded water temperature was 21.5 °C, at 0.5–2 m below the surface on August 23 (Table 5).

DISSOLVED OXYGEN

The water quality target (>5 mg/L for the epilimnion) was met throughout the year, however the water qulity target for the hypolimnion (>2 mg/L) was not met during May or August sampling. Severely anoxic conditions had developed below the thermocline or, in the case of the August lake profile, were creeping up into the mid-point of the thermocline (Table 5). By November, DO values had returned to acceptable levels.

Date	Time	Site	Secchi (m)	Collected by
Feb 7, 2021	13:00	SWMP-03	2.0	PL
Feb 7, 2021	13:00	SWMP-03	1.6	PL
Feb 23, 2021	10:45	SWMP-03	0.8	TR
May 18, 2021	11:45	SWMP-03	3.3	TR
May 30, 2021	N/a	SWMP-03	3.4	PL
June 20, 2021	11:00	SWMP-03	3.8	PL
July 3, 2021	12:45	SWMP-03	2.6	PL
July 28, 2021	13:38	SWMP-03	3.0	PL
August 3, 2021	11:35	SWMP-03	3.3	PL
August 10, 2021	13:51	SWMP-03	3.5	PL
August 15, 2021	14:45	SWMP-03	4.0	PL
August 23, 2021	10:15	SWMP-03	3.9	TR
August 29, 2021	14:30	SWMP-03	3.7	PL
November 15, 2021	10:15	SWMP-03	1.7	TR

Table 4: Secchi Depth Summary from Enos Lake 2021 Water Quality Monitoring.

Table 5: Summary of in situ Results from Enos Lake 2021 Water Quality Monitoring.

1 st Qua		Crew: TR, TN Date: Feb 23, 2021	Site: SWMP-03 Time: 10:40		Weather: Windy, cho Staff gauge: 1.06m	рру, <10 °С	Secchi: 0.82 m
	Depth (m)	Temp. (°C)	D.O. (mg/L)	D.O. (%)	pH	Sp.Con. (µS/cm)	Redox (mV)
	0.5	3.9	12.73	96.5	7.08	118.1	188.3
	1	3.7	12.51	94.8	7.00	117.9	199.2
	2	3.8	12.32	93.5	6.86	117.8	212.9
	3	3.8	12.31	93.4	6.81	117.9	224.0
	4	3.8	12.20	92.7	6.81	117.9	232.4
nal	5	3.8	12.29	93.3	6.81	117.9	236.4
lsothermal	6	3.8	12.33	93.9	6.84	117.8	242.6
lsot		-	1		-		
	7	3.8	11.93	90.3	6.86	117.9	246.2
	8	3.8	12.00	91.0	6.88	117.9	249.6
	9	3.8	11.79	89.6	6.90	117.9	252.1
	10	3.8	11.63	88.3	6.94	117.9	255.9
	10	3.8	11.69	88.7	6.94	118.3	257.8
2 nd Qu		Crew: TR, ER	Site: SWMP-0	3		ast, light breeze, ~ 18 °C	
	Depth (m)	Date: May 18, 2021 Temp. (°C)	Time: 11:40 D.O. (mg/L)	D.O. (%)	Staff gauge: 0.90 pH	sp.Con. (μS/cm)	Secchi: 3.3 m Redox (mV)
	0.5	17.9	8.32	87.8	7.28	117.7	187.0
Epi	1	17.9	8.54	90.0	7.41	117.7	186.5
ш	2	17.7	7.64	80.2	7.42	117.6	186.9
	3	17.1	8.08	83.7	7.19	117.1	190.2
	3.5	14.8	9.52	94.5	7.19	117.1	190.2
line	3.5	14.8	10.39	97.2	7.32	114.9	198.3
Thermocline							
hen	5	10.6	9.17	82.1	7.08	112.5	191.7
F	6	9.3	8.98	78.2	6.88	112.5	200.2
	7	8.3	7.30	62.2	6.74	113.0	205.2
	8	7.8	5.50	46.3	6.56	114.2	208.3
ē.	9	7.5	2.83	23.6	6.47	117.5	210.5
Нур	10	7.4	1.08*	9.0	6.4	120.7	212.0
	11	7.3	0.57*	4.8	6.36	121	211.5
3rd Qu	arter Sampling	Crew: TR, TN	Site: SWMF	P-03	Weather: Sur	nny, clear, calm, ~ 20 °C	
		Date: Aug 23, 2021	Time: 10:00		Staff gauge: 0		Secchi: 3.9 m
	Depth (m) 0.5	Temp. (°C) 21.5	D.O. (mg/L) 7.41	D.O. (%) 86.1	рН 7.86	Sp.Con. (μS/cm) 137.2	Redox (mV) 181.8
	1				7.92		179.6
Epi		21.5	7.44	84.8		137.2	
	2	21.5	7.29	81.20	7.91	137.2	179.4
	3		7.24	81.90	7.91	137.3	178
		21.4	7.24			157.5	178
	4	21.4 20.7	7.05	78.6	7.8	134.8	179.9
e	4.5			78.6 70.8			
ocline		20.7	7.05		7.8	134.8	179.9
ermocline	4.5	20.7 19.3	7.05 6.55	70.8	7.8 7.51	134.8 126.0	179.9 183.9
Thermocline	4.5 5	20.7 19.3 15.6	7.05 6.55 4.56	70.8 45.6	7.8 7.51 7.12	134.8 126.0 121.4	179.9 183.9 188.3
Thermocline	4.5 5 6	20.7 19.3 15.6 11.8	7.05 6.55 4.56 0.21*	70.8 45.6 2.1	7.8 7.51 7.12 6.33	134.8 126.0 121.4 122.5	179.9 183.9 188.3 207.5
Thermocline	4.5 5 6 7 8	20.7 19.3 15.6 11.8 9.6 8.6	7.05 6.55 4.56 0.21* 0.11* 0.07*	70.8 45.6 2.1 1.0 0.6	7.8 7.51 7.12 6.33 6.33 6.3	134.8 126.0 121.4 122.5 124.2 131.9	179.9 183.9 188.3 207.5 208.1 183
	4.5 5 6 7 8 9	20.7 19.3 15.6 11.8 9.6 8.6 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05*	70.8 45.6 2.1 1.0 0.6 0.5	7.8 7.51 7.12 6.33 6.33 6.3 6.3 6.26	134.8 126.0 121.4 122.5 124.2 131.9 144.9	179.9 183.9 188.3 207.5 208.1 183 52.6
	4.5 5 6 7 8 9 10	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 8	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05*	70.8 45.6 2.1 1.0 0.6 0.5 0.4	7.8 7.51 6.33 6.33 6.3 6.3 6.26 6.25	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6
Нүр	4.5 5 6 7 8 9 10 11	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 8 7.9	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05*	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4	7.8 7.51 7.12 6.33 6.33 6.3 6.2 6.26 6.25 6.29	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7	179.9 183.9 188.3 207.5 208.1 183 52.6
Нүр	4.5 5 6 7 8 9 10 11 arter Sampling	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8.1 8 7.9 Crew: TR, AA	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* Site: SV	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 VMP-03	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.25 6.29 Weathe	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8
Нур	4.5 5 6 7 8 9 10 11 arter Sampling	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 8 7.9	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05*	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 VMP-03	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.25 6.29 Weathe	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6
Нур	4.5 5 6 7 8 9 10 11 arter Sampling	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* Site: SV Time: 1	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 VMP-03 0:15	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff gau	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C age: 1.22m	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m
Нур	4.5 5 6 7 8 9 10 11 arter Sampling Depth (m)	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (°C)	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L)	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 VMP-03 0:15 D.O. (%)	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.2 6.25 6.29 Weathe Staff gau	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °С rige: 1.22m Sp.Con. (µS/cm)	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV)
Нур	4.5 5 6 7 8 9 10 11 arter Sampling Depth (m) 0.5	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (*C) 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff gat pH 6.73	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C age: 1.22m Sp.Con. (μS/cm) 122.5	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3
Нур	4.5 5 6 7 8 9 10 11 arter Sampling Depth (m) 0.5 1	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (*C) 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff gau pH 6.73 6.79	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C ige: 1.22m Sp.Con. (µS/cm) 122.5 122.6	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220
Нур	4.5 5 6 7 8 9 10 11 arter Sampling Depth (m) 0.5 1 2	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (°C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff gau PH 6.73 6.79 6.83	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C Ige: 1.22m Sp.Con. (µS/cm) 122.5 122.6 122.5 122.7	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1
d th Qu	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 2 3 4	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (°C) 8.1 8.1 8 8 8 8 8 8 8 8 8 8 8 8 8	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65 9.48 9.54	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 80.4 80.4	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff gau PH 6.73 6.79 6.83 6.85 6.88	134.8 126.0 121.4 122.5 124.2 131.9 144.9 151.7 r: Overcast, calm ~ 6 °C jge: 1.22m Sp.Con. (µS/cm) 122.5 122.6 122.5 122.7 122.7	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4
d th Qu	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 0.5 1 2 3 4 5	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8.1 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (°C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65 9.48 9.54 10.03	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 83.8 81.4 80.4 80.4 84.8	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff gau PH 6.73 6.79 6.83 6.79 6.83 6.85 6.88 6.88 6.92	134.8 126.0 121.4 122.5 124.2 131.9 144.9 151.7 r: Overcast, calm ~ 6 °C gge: 1.22m Sp.Con. (µS/cm) 122.5 122.6 122.7 122.7 122.7 122.7 122.7	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4 210.4
d AH	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 0.5 1 2 3 4 5 6	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (*C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65 9.48 9.54 10.03 9.83	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 83.8 81.4 80.4 80.4 80.4 83.8	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff ga PH 6.73 6.79 6.83 6.83 6.85 6.88 6.88 6.88 6.92 6.95	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C rge: 1.22m Sp.Con. (μS/cm) 122.5 122.6 122.5 122.7 122.7 122.7 122.7	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4 210.4 208.4
Нур	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 0.5 1 2 3 4 5 6 6 7	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (°C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65 9.48 9.54 10.03 9.83 9.89	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 83.8 81.4 80.4 80.4 80.4 83.6 83.5	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff ga PH 6.73 6.79 6.83 6.85 6.83 6.85 6.88 6.85 6.88 6.92 6.95 6.97	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C rge: 1.22m Sp.Con. (μS/cm) 122.5 122.6 122.5 122.7 122.7 122.7 122.7 122.7 122.7 122.8	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4 210.4 208.4 206.4
d⁄AH 4 th Qu	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 0.5 1 2 3 4 5 6 6 7 8	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (°C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65 9.48 9.54 10.03 9.83 9.89 9.58	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 83.8 81.4 80.4 80.4 80.4 83.6 83.5 83.5 81.0	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff ga PH 6.73 6.79 6.83 6.85 6.88 6.85 6.88 6.85 6.88 6.92 6.95 6.97 6.98	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C rge: 1.22m Sp.Con. (μS/cm) 122.5 122.6 122.7 122.7 122.7 122.7 122.7 122.8 122.8	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4 210.4 208.4 206.4 205.2
4 th Qu	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 0.5 1 2 3 4 5 6 6 7	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (*C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65 9.48 9.54 10.03 9.83 9.89	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 83.8 81.4 80.4 80.4 80.4 83.6 83.5	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff ga PH 6.73 6.79 6.83 6.85 6.83 6.85 6.88 6.85 6.88 6.92 6.95 6.97	134.8 126.0 121.4 122.5 124.2 131.9 144.9 151.7 r: Overcast, calm ~ 6 °C gge: 1.22m Sp.Con. (µS/cm) 122.5 122.6 122.7 122.7 122.7 122.7 122.7 122.8 122.8 122.4	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4 210.4 208.4 206.4 205.2 204.3
4 th Qu	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 0.5 1 2 3 4 5 6 6 7 8	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (°C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* Site: SV Time: 1 D.O. (mg/L) 9.85 9.94 9.65 9.48 9.54 10.03 9.83 9.89 9.58	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 83.8 81.4 80.4 80.4 80.4 83.6 83.5 83.5 81.0	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff ga PH 6.73 6.79 6.83 6.85 6.88 6.85 6.88 6.85 6.88 6.92 6.95 6.97 6.98	134.8 126.0 121.4 122.5 124.2 131.9 144.9 149.4 151.7 r: Overcast, calm ~ 6 °C rge: 1.22m Sp.Con. (μS/cm) 122.5 122.6 122.7 122.7 122.7 122.7 122.7 122.7 122.8 122.8	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4 210.4 208.4 206.4 205.2
4 th Qu	4.5 5 6 7 8 9 10 11 arter Sampling 0.5 1 1 2 3 4 5 6 6 7 8 9	20.7 19.3 15.6 11.8 9.6 8.6 8.1 8 7.9 Crew: TR, AA Date: Nov 16, 2021 Temp. (*C) 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.05 6.55 4.56 0.21* 0.11* 0.07* 0.05* 0.05* 0.05* 0.05* 0.05* 0.05* 9.85 9.94 9.54 10.03 9.83 9.89 9.58 9.65	70.8 45.6 2.1 1.0 0.6 0.5 0.4 0.4 VMP-03 0:15 D.O. (%) 84.0 83.8 81.4 83.8 81.4 80.4 83.8 81.4 80.4 83.4 80.4 83.6 83.5 83.5 81.0 80.8	7.8 7.51 7.12 6.33 6.3 6.3 6.3 6.26 6.25 6.29 Weathe Staff ga PH 6.73 6.79 6.83 6.85 6.83 6.85 6.88 6.85 6.88 6.92 6.95 6.97 6.98 6.99	134.8 126.0 121.4 122.5 124.2 131.9 144.9 151.7 r: Overcast, calm ~ 6 °C gge: 1.22m Sp.Con. (µS/cm) 122.5 122.6 122.7 122.7 122.7 122.7 122.7 122.8 122.8 122.4	179.9 183.9 188.3 207.5 208.1 183 52.6 -64.6 -138.8 Secchi: 1.7 m Redox (mV) 222.3 220 217.1 215.6 213.4 210.4 208.4 206.4 205.2 204.3

* = Dissolved Oxygen (mg/L)) values below the water quality targets of 5 mg/L in the epilimnion or 2 mg/L in the hypolimnion (per the ELPMP; PGL 2016).

3.3 Laboratory Samples

A summary of laboratory sample results is provided in Table 6. Each parameter is discussed in detail in Deniseger (2021) (Appendix 2).

PHOSPHOROUS

In 2021, the mean annual Total P was below the water quality target of 12 μ g/L (Table 2), at 10.7 μ g/L (*SD* = 4.3).

This target threshold was exceeded by individual samples on three occasions from February – August of 2021 (Table 6).

In 2019, the mean annual across all samples was also well below target at 7.3 μ g/L (*SD* = 5.0). In 2020, 2018 and 2017, the averages were at or above the target at 12.0 μ g /L (*SD* = 2.5), 16.6 μ g/L (*SD* = 10.6), and 20.4 μ g/L (*SD* = 11.1), respectively.

Orthophosphate was relatively undetectable in 2021, with values below the laboratory Reported Detection Limit (RDL) of 1 μ g/L for almost all samples, except one result of 1.1 μ g/L on February 23 at 1m depth.

CHLOROPHYLL-A

In 2021, chlorophyll-*a* values were well below the upper limit of 19.8 μ g/L as specified in the ELPMP (Table 2). The maximum chlorophyll-*a* concentration was 9.7 μ g/L, collected on August 23 at 9.5 m depth.

The mean annual chlorophyll-*a* across all depths and dates in 2021 was 6.9 μ g/L (*SD* = 2.5). This is the second lowest mean annual result, just slightly higher than the year 2019 (*M* = 4.5 μ g/L, *SD* = 2.2) but well below the years 2020 (*M* = 9.21 μ g/L, *SD* = 4.97), 2018 (*M* = 10.22 μ g/L, *SD* = 3.65) and 2017 (*M* = 10.55 μ g/L, *SD* = 6.52).

3.4 Invasive Species

No invasive species were noted during field sampling in 2021.

Date			Feb 23, 2021			May 18, 2021		Aug 23, 2021			Nov 16, 2021			
Site		SWMP-03		SWMP-03		SWMP-03			SWMP-03					
	Units	RDL ¹	1 m	5 m	10 m	1 m	5 m	9.5 m	1 m	5 m	9.5 m	1 m	5 m	10 m
Chlorophyll-a	μg/L	0.50	7.38	6.92	8.89	1.95	3.87	6.99	3.69	7.2	9.7	9.66	9.45	6.83
Anions														
Orthophosphate- Dissolved (as P)	mg/L	0.001	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nutrients														
Total Phosphorus (P)	mg/L	0.002	0.0139 ²	0.0116	0.0093	0.0063	0.0094	0.0157 ²	0.0042	0.0076	0.0192 ²	0.0120	0.0069	0.0120

Table 6: Summary of Laboratory Results from Enos Lake 2021 Water Quality Monitoring.

¹ RDL = Reportable Detection Limit

 2 Total phosphorous (Total P) values exceeding the water quality target of ${\leq}12~\mu\text{g/L}$

4.0 Discussion

The primary intent of the Enos Lake monitoring program is to better understand the lake's productivity trends (PGL 2016; Deniseger 2019) and to build a consistent, long-term database to assess the overall health of Enos Lake with respect to ongoing development, land use, and increasing population within the watershed (Deniseger 2020; Nordin 2017; PGL 2016). The general management objective for Enos Lake is to maintain pre-development water quality and to avoid eutrophication (PGL 2016).

Watershed disturbances such as logging, road building, development, and climate change impacts all have potential to shift the lake's trophic status through increased stormwater runoff, nutrient loading, rising air and water temperatures, and seasonal variability in precipitation. Therefore, it is important to take surrounding land use and seasonal climate patterns into account when interpreting the water quality trends of Enos Lake.

4.1 Air temperature and precipitation

A strong "heat dome" event in early summer 2021 influenced weather patterns for the east coast of Vancouver Island (Deniseger 2021; Environment Canada 2021).

Hourly air temperatures in June frequently peaked at 35-40 °C for several consecutive days. There was little to no precipitation recorded between mid-June and early September (Fig. 2), characterizing the summer of 2021 as being hot and dry.

This was followed by relatively early fall rains beginning in mid-September, and a significant storm pattern, widely reported as an "atmospheric river", causing significant precipitation in the month of November.

This type of early season hot/dry and late season warm/wet weather pattern is predicted to occur more frequently as the impacts of climate change unfold over time. Long-term trends of warming air and water temperatures will cause summer stratification to begin earlier and extend later in the year (Deniseger 2021).

4.2 In situ Field Parameters

WATER CLARITY

Secchi depth is a relatively simple measure of clarity, which can provide insight into lake health and productivity (Deniseger 2021). The Secchi readings collected in 2021 followed a similar trend as in 2020, indicating an early spring phytoplankton bloom occurred in late February.

The advantage of additional Secchi depth observations collected by FoEL throughout the year is it allows for a broader understanding of Enos Lake's ecological dynamics. Monthly Secchi readings should continue, as it is a relatively inexpensive and simple way to gain additional insight into blooms or sediment loading.

TEMPERATURE

Enos Lake usually begins to thermally stratisfy as early as March – April, and undergoes fall turnover between October – November (Nordin 2017 and Deniseger 2018).

In 2021 and 2020, isothermal mixing was noted in February while a strong stratification was observed in May, suggesting adherence to this typical spring pattern. Stratification continued through late summer, contributing to the strongly anoxic conditions observed below 5m depth in August (Deniseger 2021).

Water temperature influences several other chemical and physical water quality parameters, and influences a lake's susceptibility to watershed activities and disturbance. It has a significant and pronounced effect on stratification and mixing (Deniseger 2021).

DISSOLVED OXYGEN

DO concentration targets for the hypolimnion (≥2 mg/L) were not met in May or August of 2021. Per Deniseger (2021), "a very steep, compressed thermocline was observed in August, particularly between 4.5 and 6 meters [...] This strong thermocline is continuous at least from mid-spring through early fall, effectively isolating the deeper waters of the lake."

Mid-summer anoxia recorded in 2021 was at its most extreme since the start of monitoring, with an average DO in the hypolimnion of 0.05 mg/L that extended well up into the thermocline. This is compared to DO concentrations (in the hypolimnion only) of 0.05 mg/L, 0.09 mg/L, 0.25 mg/L and 1.27 mg/L in 2020, 2019, 2018 and 2017, respectively (BCCF 2020; BCCF 2019; BCCF 2018; BCCF 2017).

A strong thermocline, paired with biological decomposition of organic matter at the lake bottom, results in severe oxygen depletion within the hypolimnion. Enos Lake is frequently subjected to low oxygen (hypoxic) conditions in the hypolimnion during the summer (≤1 mg/L) which is likely a naturally existing condition of the lake ecosystem (MESL 2014; PGL 2016). However, the hot and dry summer weather pattern in 2021 compressed and steepened the thermocline in Enos Lake to a degree not seen in previous monitoring years.

These conditions are capable of producing a late summer fish die-off due to oxygen depletion (Deniseger 2021). A trend of worsening hypoxia at depth should be closely monitored in summer to ensure the oxygen depletion does not extend too far up into the thermocline, restricting the habitable range for aquatic life. If the hypolimnion volume increases and dwarfs the epilimnion, it could cause total die-offs for fish in the event of late summer mixing or fall turnover, bringing the entire lake below suitable oxygen levels for aquatic life (Deniseger 2021).

4.3 Laboratory Samples

PHOSPHOROUS

In lakes, phosphorus is an important nutrient and key indicator of productivity; excessive phosphorus can result in blooms and subsequent low dissolved oxygen levels, impacting water quality and fish health (Deniseger 2021). Mean annual Total P results suggest the productivity of Enos Lake in 2021 remained below the target threshold of 12 μ g/L. The highest individual Total P concentrations were measured in

May (15.7 μ g /L) and August (19.2 μ g /L), reflecting prolonged oxygen deficit in the hypolimnion and internal loading of phosphorus from lake sediments (Deniseger 2021).

CHLOROPHYLL-A

The concentration of chlorophyll-*a*, a major photosynthetic pigment of algae, is an indicator of the amount of algae in water and is another parameter used to assess biological productivity of Enos Lake. A target for Enos Lake outlined in the ELPMP was to avoid any increase in chlorophyll-*a* over time from the baseline values ranging from $0.17 - 19.8 \mu g/L$ (Table 2). Based on the data gathered over the last 5 years, this target has thus far been met.

General trophic status classification using Total P and chlorophyll-*a* is summarized in Table 6 below, per comments in Deniseger (2021).

sno	<10 µg/L 1	Oligotrophic			
Total phosphorous	10 - 30 μg/L ¹	Mesotrophic			
pho	>30 µg/L ¹	Eutrophic			
yll-	<2 µg/L	Oligotrophic			
Chlorophyll- a	2 - 7 μg/L	Mesotrophic			
Chle	>7 µg/L	Eutrophic			

Table 7: Summary of trophic status classification based on chlorophyll-*a* and total phosphorous.

¹ In lakes with longer residence times (>1 year), the Total P assessment is based on concentrations at spring overturn, prior to the establishment of a thermocline. In lakes with shorter residence times (<1 year), it is based on an annual mean.

Using the assessment methods in Table 7 for Total P, Enos Lake would be considered mesotrophic (or moderately productive) in 2021, 2020, 2018 and 2017, but oligotrophic (low productivity) in 2019. Using the assessment of mean chlorophyll-*a* concentration, Enos Lake would be considered mesotrophic in 2021 and 2019, whereas 2020, 2018 and 2017 were indicative of a eutrophic (high productivity) lake.

This year-to-year variability highlights the importance of building a longer term dataset which can help illustrate trends over time. All results are discussed in further detail in Deniseger (2021) (Appendix 2).

As lakes become more eutrophic, there is a higher risk of algae blooms which can lead to lower oxygen levels and impaired water quality. Once lakes become eutrophic, it is very difficult to reverse the process; prevention of eutrophication is a far more effective tool in protecting lake water quality (Deniseger 2021).

Preventative measures include avoiding additional nutrient loading caused by land disturbance and runoff, which can achieved through preservation of native vegetation and wide riparian buffers, avoidance of pavement or large lawnscapes in favour of permeable pavements or forested landscapes, sediment mitigation measures during construction, and a stormwater management plan to capture and treat runoff (WDNR 2006).

4.4 Invasive Species

A BCCF biologist trained in aquatic invasive plant ID attended all sampling dates and made incidental observations of aquatic and terrestrial plants, per recommendations in the ELPMP (PGL 2016). No aquatic invasive species were noted again in 2021. A draft of invasive species awareness signage was further refined in partnership with the FoEL and the BC Invasive Species Council, and submitted in 2021 for review and feedback.

5.0 Recommendations

- Ongoing monitoring and water quality protection efforts will help prevent Enos Lake from undergoing significant detrimental change in productivity. Future monitoring should, at minimum, follow the suggested schedule and guidelines as laid out in the ELPMP (PGL 2016).
- Of specific concern in 2021, a trend of intensifying hypoxia at depth and extending into the thermocline prompts paying close attention to lake stratification intensity in the coming years.
- 2021 again showed the value of additional Secchi measurements. This should continue, as
 volunteer capacity allows, during the summer when the lake is stratified (March November) and
 at least one or two additional winter readings (December March).
- A 5-year expanded monitoring protocol is recommended for 2022, including monitoring for metals/hardness, PAHs in lake sediment, and *E. coli* per the ELPMP (Appendix 3). The purpose of this expanded monitoring is to examine trends, review the monitoring program, and provide feedback for ongoing sustainable watershed management.
- Additional suggestions for data accuracy include implementing a QA/QC program to increase confidence in field data collection methods and lab analysis results (e.g., duplicate and field blank samples, duplicate YSI readings on ascent & descent of probes).

References

- BC Ministry of Water, Land and Air Protection. 2003. Ambient Freshwater and Effluent Sampling Manual. Available from: https://www.for.gov.bc.ca/hts/risc/pubs/aquatic/ambient/ part_e_water_and_wastewater_sampling_ambient_freshwater_and_effluent_sampling_simulate _template.pdf>.
- Baird, R. and Bridgewater, L. 2017. *Standard Methods for the Examination of Water and Wastewater*. Washington, D.C.: American Public Health Association.
- BC Conservation Foundation (BCCF). 2019. *Enos Lake Water Quality Monitoring Program 2019 Annual Report*. Prepared for FW Developments Ltd. 54p.
- BC Conservation Foundation (BCCF). 2018. *Enos Lake 2018 Annual Water Quality Technical Report*. Prepared for FW Developments Ltd. 11p.
- BC Conservation Foundation (BCCF). 2017. *Enos Lake 2017 Annual Water Quality Technical Report*. Prepared for FW Developments Ltd. 16p.
- Deniseger, J. 2021. *Enos Lake Protection and Monitoring Program: Review of 2021 Water Quality Data*. 16p.
- Deniseger, J. 2020. *Enos Lake Protection and Monitoring Program: Review of 2020 Water Quality Data*. 14p.
- Deniseger, J. 2019. *Enos Lake Protection and Monitoring Program: Review of 2019 Water Quality Data*. 13p.
- Deniseger, J. 2018. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data*. 10p.
- Environment Canada. 2011. Enos Lake Limnetic Threespine Stickleback. Species Profile. Available from: https://wildlife-species.canada.ca/species-risk-registry/species/species/betails_e.cfm?sid=749>.
- Environmenta Canada. 2020. Daily Data Report for Qualicum Beach Airport, British Columbia. Available from: <https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=2006-12-11%7C2020-12-17&dlyRange=2006-11-01%7C2020-12-17&mlyRange=2006-11-01%7C2006-11-01&StationID=45627&Prov=BC&urlExtension=_e.html&searchType=stnName&optLimit=yearRang e&StartYear=1840&EndYear=2020&selRowPerPage=25&Line=5&searchMethod=contains&Month =12&Day=17&txtStationName=qualicum&timeframe=2&Year=2020>.
- MacDonald Environmental Services Ltd (MESL). 2014. 2013 Water Quality Monitoring Report for Enos Lake, Nanoose Bay. Prepared for: Pottinger Gaherty Environmental Consultants Ltd.
- Michigan State University (MSU). 2008. *Cooperative Lakes Monitoring Program*. Annual Summary Report. 22p + appendices. Available from: https://www.canr.msu.edu/michiganlakes/uploads/files/2008CLMPFinalReport.pdf>.

Nordin, R. 2017. Enos Lake Protection and Monitoring Program: Review of 2017 Water Quality Data. 23 p.

- Pettersson, K. 1998. Mechanisms for internal loading of phosphorus in lakes. *Hydrobiologia*, 373, pp.21-25.
- PGL Environmental Consultants (PGL). 2016. *Enos Lake Protection and Monitoring Program*. Prepared for FW Enterprises Ltd. c/o Seacliff Properties. PGL file 4675-01.01. 30 p + figures and appendix.
- Taylor, E. B., Boughman, J. W., Groenenboom, M., Sniatynski, M., Schluter, D., & Gow, J. L. 2006. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. *Molecular Ecology*, 15(2), 343-355.
- Taylor, E. B., & Piercey, R. S. 2018. Going, going, gone: evidence for loss of an endemic species pair of threespine sticklebacks (Gasterosteus aculeatus) with implications for protection under speciesat-risk legislation. *Conservation genetics*, *19*(2), 297-308.
- Washington Department of Natural Resources (WDNR). 2006. Fact Sheet 2006–3033 Evaluating the Effects of Nearshore Development on Wisconsin Lakes. Available from: https://pubs.usgs.gov/fs/2006/3033/>.

Appendix 1

Laboratory results

CERTIFICATE OF ANALYSIS

Work Order	: VA21A3306	Page	: 1 of 2
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 7217 Lantzville Road Suite 1	Address	: 8081 Lougheed Highway
	Lantzville BC Canada V0R 2H0		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: Enos Lake - 1301073	Date Samples Received	: 24-Feb-2021 08:20
PO	:	Date Analysis Commenced	: 24-Feb-2021
C-O-C number	: 20-905695	Issue Date	: 02-Mar-2021 13:00
Sampler	: TN/TR/PST		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Analytical Results

Sub-Matrix: Water Client sample ID				SWMP 03 (1m)	SWMP 03 (5m)	SWMP 03	 	
(Matrix: Water)							(10m)	
Client sampling date / time				23-Feb-2021 11:20	23-Feb-2021 11:25	23-Feb-2021 11:30	 	
Analyte	CAS Number	Method	LOR	Unit	VA21A3306-001	VA21A3306-002	VA21A3306-003	
					Result	Result	Result	
Anions and Nutrients								
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0011	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0139	0.0116	0.0093	
Plant Pigments								
chlorophyll a	479-61-8	E870	0.010	µg/L	7.38	6.92	8.89	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA21A3306	Page	: 1 of 6
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 7217 Lantzville Road Suite 1	Address	: 8081 Lougheed Highway
	Lantzville BC Canada V0R 2H0		Burnaby, British Columbia Canada V5A 1W9
elephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: Enos Lake - 1301073	Date Samples Received	: 24-Feb-2021 08:20
0	:	Issue Date	: 02-Mar-2021 12:58
-O-C number	: 20-905695		
ampler	: TN/TR/PST		
lite	:		
uote number	: Q78255 - Standing offer		
o. of samples received	:3		
lo. of samples analysed	: 3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

/latrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation			Analys	is		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel)									
HDPE										
SWMP 03 (10m)	E378-U	23-Feb-2021					24-Feb-2021	3 days	1 days	1
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel)									
HDPE										
SWMP 03 (1m)	E378-U	23-Feb-2021					24-Feb-2021	3 days	1 days	1
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel)									
HDPE	5070.11									,
SWMP 03 (5m)	E378-U	23-Feb-2021					24-Feb-2021	3 days	1 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	E372-U	23-Feb-2021	25-Feb-2021		0 days	1	26-Feb-2021	05 dava	0 days	1
SWMP 03 (10m)	E372-0	23-Feb-2021	25-FeD-2021	28	2 days	v	20-FeD-2021	25 days	0 days	v
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)							1			
Amber glass total (sulfuric acid) SWMP 03 (1m)	E372-U	23-Feb-2021	25-Feb-2021	28	2 days	1	26-Feb-2021	25 days	0 davs	1
	2072-0	201 05 2021	201 00-2021	days	2 days	•	201 05-2021	20 days	0 days	
				dayo						
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid)										
SWMP 03 (5m)	E372-U	23-Feb-2021	25-Feb-2021	28	2 days	1	26-Feb-2021	25 days	0 davs	1
				days					, -	
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE										
SWMP 03 (10m)	E870	23-Feb-2021	25-Feb-2021	2 days	1 days	1	28-Feb-2021	28 days	3 days	1
									-	
								1		

Matrix: Water					Εv	aluation: × =	Holding time exce	edance ; •	🗸 = Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP 03 (1m)	E870	23-Feb-2021	25-Feb-2021	2 days	1 days	~	28-Feb-2021	28 days	3 days	✓
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP 03 (5m)	E870	23-Feb-2021	25-Feb-2021	2 days	1 days	1	28-Feb-2021	28 days	3 days	1

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluatio	on: 🛎 = QC frequ	ency outside spe	ecification; 🗸 =	QC frequency wit	hin specificatior
Quality Control Sample Type	· ·	C	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	154978	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	155261	1	13	7.6	5.0	✓
Laboratory Control Samples (LCS)							
Chlorophyll-a by Fluorometry	E870	155235	1	11	9.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	154978	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	155261	1	13	7.6	5.0	✓
Method Blanks (MB)							
Chlorophyll-a by Fluorometry	E870	155235	1	11	9.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	154978	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	155261	1	13	7.6	5.0	✓
Matrix Spikes (MS)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	154978	1	14	7.1	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	155261	1	13	7.6	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is
	Vancouver - Environmental			recommended to ensure test results represent conditions at time of sampling.
Chlorophyll-a by Fluorometry	E870	Water	EPA 445.0 (mod)	Chlorophyll a is determined by a 90 % acetone extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to
	Vancouver -			interferences from chlorophyll b. Sample volume provided by client.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Chlorophyll-a Extraction	EP870	Water	EPA 445.0 (mod)	Chlorophyll a is determined by a 90 % acetone extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to
	Vancouver -			interferences from chlorophyll b. Sample volume provided by client.
	Environmental			

QUALITY CONTROL REPORT

Work Order	·VA21A3306	Page	: 1 of 3
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	:Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 7217 Lantzville Road Suite 1 Lantzville BC Canada V0R 2H0	Address	∺8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: Enos Lake - 1301073	Date Samples Received	: 24-Feb-2021 08:20
PO	:	Date Analysis Commenced	: 24-Feb-2021
C-O-C number	: 20-905695	Issue Date	:02-Mar-2021 12:58
Sampler	: TN/TR/PST		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrients (QC Lot: 154978)											
VA21A3276-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0081	0.0084	0.0003	Diff <2x LOR	
Anions and Nutrient	Anions and Nutrients (QC Lot: 155261)										
FJ2100079-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0028	0.0021	0.0007	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 154978)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 155261)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Plant Pigments (QCLot: 155235)					
chlorophyll a	479-61-8 E870	0.01	µg/L	<0.010	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Anions and Nutrients (QCLot: 154978)												
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	95.4	80.0	120				
Anions and Nutrients (QCLot: 155261)												
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	101	80.0	120				
Plant Pigments (QCLot: 155235)												
chlorophyll a	479-61-8	E870	0.01	µg/L	5 µg/L	110	80.0	120				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report									
					Spi	ike	Recovery (%)	Recovery	Limits (%)					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Anions and Nutri	ents (QCLot: 154978)													
VA21A3276-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0286 mg/L	0.03 mg/L	95.4	70.0	130					
Anions and Nutri	ents (QCLot: 155261)													
VA21A3306-001	SWMP 03 (1m)	phosphorus, total	7723-14-0	E372-U	0.0485 mg/L	0.05 mg/L	97.0	70.0	130					

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 905695

Canada Toll Free: 1 800 668 9878

of 🛛 Page

Report To	Contact and company name below will appe	ear on the final report		Reports / R	tecipients				Tur	naround	Time (T	AT) Rec	quested				2 N	4: 4:	1. 1.	a de la compañía de
Company:	BC Conservation Fou	undation	Select Report Fo	rmat: 🕅 PDF	DEXCEL DED	D (DIGITAL)	A Ro	utine (R)	if receiv	ved by 3pm	• M-F - r	no surcha	rges apply					8	*	\$. ⁴⁴
Contact:	They Roders		Merge QC/QC	Reports with COA	U YES 🗌 NO	D N/A	4	day (P4) i	if receive	ed by 3pm	M-F - 2	0% rush:	surcharge r	nin imum			**************************************	2	*	¢"
Phone:	250-419-3805		🚺 Compare Resul	lts to Criteria on Report - p	provide details below if I	box checked	-						surcharge			A111A	ALS BARCE	JDE LAI	BEL HE	RE «
	Company address below will appear on the fina	il report	Select Distributio	~ ~	MAIL 🔲		-						surcharge surcharge			*	et 🖉	æ	- 18 	8 8
Street:	#1-7217 (antzuil	le BC	Email 1 or Fax	trodgers	C beef	com	Sar	me day [E	E2) if rec	eived by 1	Dam M-S	- 200% r	ush surchar	rge. Addition	onal fees	a 19	1. N.	с. 2	14 14	
City/Province:			Email 2				та та	ay apply t	orush re	quests on v	weekends,	statutory	holidays an	d non-routi	ine tests.	2	* * *	а .	A.	泰
Postal Code:	NOR 2HD		Email 3					Date and	d Time F	Required f	or all E&I	P TATs:			dd	3-mnim-y	y hh:mm an	n/pm		
Invoice To	Same as Report To 🕅 YES	D NO		Invoice R	ecipients			<u>(</u> 9)		For all t	ests with	rush TATs	s requested,	please cor	ntact your	AM to confir	m availability.			
· · · ·	Copy of Invoice with Report 🕅 YES	D NO	Select Invoice Di	stribution: 💢 🗗	AAIL 🔲 MAIL 🗌	FAX		Ř					Analy	sis Req	uest				•	
Company:				troduers			RS RS	75		ndicate Fil	tered (F),	Preserve	ed (P) or Fil	tered and	Preserved	d (F/P) belov	N		G	(se
Contact:			Email 2	nevickle bo	r F. Com	·	ᆝ핕ㅣ	11											l R	notes)
	Project Information	. <u> </u>	C	oil and Gas Require	d Fields (client us	e)	CONTAINERS	UNF		a									REQUIRED	ee
ALS Account #/			AFE/Cost Center:		PO#	- ···	Ę	S	<u>a</u> `	A.								НОГР		ŝ
	SLake = 1301073		Major/Minor Code:		Routing Code:	· · · · · · · · · · · ·	<u></u>	6	Y	Ph 1								오	4 GE	RD
PO/AFE:			Requisitioner:					70	i-	S								Z	ORA	Ā
LSD:			Location:				ō	2	`\$	×									ST	I I
ALS Lab Work	(Order # (ALS use only):	305	ALS Contact:	Sncha S.	Sampler: TN	į tr	NUMBER	lond	Ohu	Orthof			<u>_</u>]			~ .		L Ľ	EXTENDED	CTEL
ALS Sample #		n and/or Coordinates	<u></u>	Date	Time		ĪĒ	CHR	ğ	म्			į į	Envir	'onmi	ental I	Division	. 7) É	SP.
(ALS use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	ź	U	15 ta	ω				Venury	$\alpha \alpha \alpha \alpha$	er			/ L	SUSP
	SWMP 03 ([m)			23 Feb	11:20	Water	3		P					Wor	rk Ord	er Refe	^{rence} 3306	į	r I	
	SWAR 03 (Sm)		· · · · · · · · · · · · · · · · · · ·	<u>.</u>	11:25	····()	3		p		+	<u>†</u> ;		- V/	A2'	1A?	3. <u>7</u> .0e	: 1		· · · ·
20°5 A. 3		m			11:30	~~	3		b b			<u> </u>					,000	' F		<u> </u>
5.388 2.5 A.A.	SWINIP 03 (10)		<u> </u>		-11.,20		2		<u>r</u>			<u> </u>				Kal. W	5. B UUL	F		
	<u> </u>	/					+				+	<u> </u>			160 I	5 Y N	7.	Ļ	_	<u> </u>
															k) s i	1.1	52	Ļ		<u> </u>
												j			177	3.489	Q Q			
Botton de r	· · ·			 The transmission of a set 		1			1			1				.,,,, ,,,		1		
													Tel	ephone	: +1 60¥	4 253 418	e			
19 10 A.		<u> </u>										T\.	•					Ē		
*				 		 	1			·		†			7-7		·]	-1		
				·····				-++						-+	++		+			+
				<u> </u>		<u></u>		+							++		+-+-		· .	
the second second								-			SAK		ECEIPT	DETAIL	S (ALS	use only	┹┻			
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specin		evaluation by-selectin Excel COC only)	g from drop-down i	Delow	Coolin	ng Meth		_	_	The second s					 ∏		JATED	arte
Are samples taken	from a Regulated DW System?	-04-1-1-1-		t-c	· Inter for	14							le Receir						\$ 	
D YES	s VΩT NO	-Chlorophy 11-		N.S. TP. OL		tored	· · · · · · · · · · · · · · · · · · ·			als Intact						tody Seal		- O Y	res ' n	N/A
Are samples for hu	uman consumption/ use?	wi 48 how	is sol	ene pro	cen as	ap if				OOLER TE				19			LER TEMPER/			1 1 1
U YES	NO	-Chlorophyil: w/i 48 hov	- - -	possible	-3	¥	1	14		*	18 ⁽¹⁹⁾		, × , ×	j- 1 34	* * * *		3 🗍 🖲	34 34	8 [.] \$	*
	7 SHIPMENT RELEASE (client use)		S. 1. 8 . 16	INITIAL SHIPMEN	T RECEPTION (AL	S use only) 🚳	5. A. 1997	ž:	<u>ا</u> تھ	*	ж. Ж.	FINAL	SHIPME			N (ALS u		- 4 ⁰ 1 6	**.	*
Released by:	TR Date: Fcb.	Q3 1400	Received by:		Date:		Time:		Receiv	/ed by: ²	*	JC	* Di	ate:	FEB	242	021 🐭	Time	200	ان مرز د
REFER TO BACK R			1. M. 2. 1.	5 5 × 5			AV - CLIE		DV	1. A.	\$	<u> </u>	8	9 .a.	17. Mà	<u>*</u>	- 愛 走	نهلت	100	<u>m</u>

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	× VA21A9627	Page	: 1 of 2
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	:	Date Samples Received	: 19-May-2021 08:15
PO	: Enos Lake 1302015	Date Analysis Commenced	: 20-May-2021
C-O-C number	:	Issue Date	: 27-May-2021 15:38
Sampler	: TR		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L mg/L	micrograms per litre milligrams per litre
	·······

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	SWMP 03 (1m)	SWMP 03 (5m)	SWMP 03	
(Matrix: Water)							(9.5m)	
			Client samp	ling date / time	18-May-2021 11:30	18-May-2021 11:35	18-May-2021 11:40	
Analyte	CAS Number	Method	LOR	Unit	VA21A9627-001	VA21A9627-002	VA21A9627-003	
					Result	Result	Result	
Anions and Nutrients								
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0063	0.0094	0.0157	
Plant Pigments								
chlorophyll a	479-61-8	E870	0.010	µg/L	1.95	3.87	6.99	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA21A9627	Page	: 1 of 5
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	: +1 604 253 4188
Project	:	Date Samples Received	: 19-May-2021 08:15
PO	: Enos Lake 1302015	Issue Date	: 27-May-2021 15:38
C-O-C number	:		
Sampler	: TR		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	:3		
No. of samples analysed	: 3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

atrix: Water					E١	/aluation: × =	Holding time exce	edance ; •	= Within	Holding T
nalyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE										
SWMP 03 (5m)	E378-U	18-May-2021					27-May-2021	3 days	10 days	*
										EHT
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE										
SWMP 03 (1m)	E378-U	18-May-2021					26-May-2021	3 days	9 days	*
										EHT
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE										
SWMP 03 (9.5m)	E378-U	18-May-2021					26-May-2021	3 days	9 days	35
									EHT	
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
SWMP 03 (1m)	E372-U	18-May-2021	26-May-2021		8 days	1	26-May-2021	28 days	1 days	✓
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
SWMP 03 (5m)	E372-U	18-May-2021	26-May-2021		8 days	✓	26-May-2021	28 days	1 days	✓
nions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
SWMP 03 (9.5m)	E372-U	18-May-2021	26-May-2021		8 days	1	26-May-2021	28 days	1 days	✓
lant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE										
SWMP 03 (1m)	E870	18-May-2021	20-May-2021	2 days	2 days	✓	23-May-2021	672 hrs	4 days	✓

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP 03 (5m)	E870	18-May-2021	20-May-2021	2 days	2 days	~	23-May-2021	679 hrs	4 days	~
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP 03 (9.5m)	E870	18-May-2021	20-May-2021	2 days	2 days	1	23-May-2021	679 hrs	4 days	✓

Legend & Qualifier Definitions

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	on: × = QC frequ	ency outside spe	ecification; 🗸 = 0	QC frequency wit	hin specificatio
Quality Control Sample Type		·	C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	205429	2	9	22.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	205458	1	8	12.5	5.0	✓
Laboratory Control Samples (LCS)							
Chlorophyll-a by Fluorometry	E870	201750	1	14	7.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	205429	2	9	22.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	205458	1	8	12.5	5.0	✓
Method Blanks (MB)							
Chlorophyll-a by Fluorometry	E870	201750	1	14	7.1	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	205429	2	9	22.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	205458	1	8	12.5	5.0	✓
Matrix Spikes (MS)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	205429	1	9	11.1	5.0	~
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	205458	1	8	12.5	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is
	Vancouver - Environmental			recommended to ensure test results represent conditions at time of sampling.
Chlorophyll-a by Fluorometry	E870	Water	EPA 445.0 (mod)	Chlorophyll a is determined by solvent extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to interferences from
	Vancouver -			chlorophyll b. Sample volume provided by client.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Chlorophyll-a Extraction	EP870	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	[:] VA21A9627	Page	: 1 of 4
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	∶105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9	Address	∶8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	:+1 604 253 4188
Project	:	Date Samples Received	: 19-May-2021 08:15
PO	: Enos Lake 1302015	Date Analysis Commenced	:20-May-2021
C-O-C number	:	Issue Date	:27-May-2021 15:38
Sampler	: TR		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		
This report supersedes any	previous report(s) with this reference. Results apply to the sample(s) a	as submitted. This document shall r	not be reproduced, except in full.

This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

• Matrix Spike (MS) Report; Recovery and Acceptance Limits

• Reference Material (RM) Report; Recovery and Acceptance Limits

- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

Page	: 2 of 4
Work Order	: VA21A9627
Client	: The British Columbia Conservation Foundation
Project	:

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water	Sub-Matrix: Water						Laboratory Duplicate (DUP) Report										
Laboratory sample ID	Client sample ID	Analyte CAS Number Method		LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier							
Anions and Nutrient	Anions and Nutrients (QC Lot: 205429)																
VA21A9618-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR							
Anions and Nutrient	s (QC Lot: 205458)																
FJ2100275-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR							
Anions and Nutrient	Anions and Nutrients (QC Lot: 206449)																
VA21A9627-002	SWMP 03 (5m)	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR							

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 205429)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 205458)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 206449)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Plant Pigments (QCLot: 201750)						
chlorophyll a	479-61-8	E870	0.01	µg/L	<0.010	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	LCS Low		Qualifier			
Anions and Nutrients (QCLot: 205429)												
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	103	80.0	120				
Anions and Nutrients (QCLot: 205458)												
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	95.9	95.9 80.0					
Anions and Nutrients (QCLot: 206449)												
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	104	80.0	120				
Plant Pigments (QCLot: 201750)												
chlorophyll a	479-61-8	E870	0.01	µg/L	5 µg/L	109	80.0	120				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water		Matrix Spike (MS) Report												
					Spi	ike	Recovery (%)		Recovery Limits (%)					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Anions and Nutri	ents (QCLot: 205429)													
VA21A9627-001	SWMP 03 (1m)	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0323 mg/L	0.03 mg/L	108	70.0	130					
Anions and Nutri	Anions and Nutrients (QCLot: 205458)													
KS2101507-001	Anonymous	phosphorus, total	7723-14-0	E372-U	4.89 mg/L	5 mg/L	97.8	70.0	130					

	Chain of Cust	tody (COC) / /	Analytical								C Num	nber:	17 -											
	Re	equest Form		Aff	x ALS har	code label here																		
	Environmental Cauda Tr	-	_		(lab u				10 v			Pag	je	1 of	1									
	Ganada Tu	oll Free: 1 800 66	8 9878	1.1											l									
Denert To	www.alsglobal.com Contact and company name below will appear on the final report		Report Format	 / Distribution			Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)																	
Report To	BC Conservation Foundation	Select Report Fo	rmat: I PDF																					
Company:		-	QC) Report with R		• •	Regular [R] ☑ Standard TAT if received by 3 pm - business days - no surcharges apply § 4 day [P4-20%] □ § 1 Business day [E1 - 100%]									<u>~</u>									
Contact:	Thea Rodgers 250-390-2525 ext 104		to Criteria on Report -			s Day	1 1	-		GENC					-									
Phone:	Company address below will appear on the final report	Select Distributio	_				3 day [P3-25%] 2 day [P2-50%] 3 day [P2-50%] 3 day [P2-50%] 3 day [P2-50%] 3 day [P2-50%] 3 day [P2-50%] 3 day [P3-25%] 3 day [P3-25%]							y holida	ıy (E2	-200%	۵ ۵							
	#105-1885 Boxwood Road	_ 	trodgers@bco			Date and Time Required for all E&P TATs:																		
Street:		Email 1 or Fax	Tudgers@bcc																					
City/Province:	Nanaimo, BC	Email 2				Fortes	For fasts that can not be performed according to the service level selected, you will be contacted. Analysis Request																	
Postal Code:		Email 3 Invoice Distribution				<u>.</u>	la dia ata 1																	
Invoice To	Same as Report To VES NO					<u> </u>	T	Indicate	Filtered (F), Pres	servea (itered an	ia Preser T	Ved (F/P)	woled			leta						
	Copy of Invoice with Report VES NO		stribution: 🗹 EMA	· · · · · · · · · · · · · · · · · · ·	FAX	<u> </u>												ler o	i					
Company:		Email 1 or Fax	trodgers@bcc			- I -	1											furt,						
Contact:	Project lefe media	Email 2	llimerick@bcc			4	1											(please provide further detai						
	Project Information	- · · ·	and Gas Required		use)							,						rov						
ALS Account	# / Quote #: Q78255	AFE/Cost Center:		PO#		â												as p						
Job #:		Major/Minor Code;		Routing Code:		E E						, .						Dea	Ĩ					
PO / AFE:	Enos Lake 1302015	Requisitioner:				15	E)	•									c		Į					
LSD:	· · · · · · · · · · · · · · · · · · ·	Location:				Ë	sno	a:									Ģ	, pr	N					
ALS Lab Wo	rk Order # (lab use only): 9627	ALS Contact:	Rojina G.	Sampler:	TR	Chtorophy!! a (UNFILTERE	Total Phosphorous	Orthophosphate							н 1		NOS	is hazardous	ROFC					
ALS Sample # (lab use only)	Sample Identification and/or Coordinates Date (This description will appear on the report) (dd-mmm			Time (bh:mm)	Sample Type	Chlorop	Total PI	Orthopt								\sim	SAMPLES ON HOLD	Sample	NUMBER OF CONTAINERS					
	SWMP 03 (1m)		18-05-21	1130	Water	R	R	R		Er	nviro	nme	ental	Divisi	ion		Ē	-	3					
	SWMP 03 (5m)		18-05-21	1175	Water	R	R	R		Va	anco	ouver	•						3					
	SWMP 03 (9,5m)		18-05-21		Water	R	R	R	++		Worl	k Ord	er Ref	ference	·		—		3					
				1140	1140	1140	1140	1140	1140	vvalei	<u> </u>		<u> </u>			V	A2 '	1A'	962	27		_ _	+	$-\frac{3}{3}$
	·					<u> </u>	ļ									·			_					
						I	<u> </u>						ЩŲ.	kia P					_					
												196												
	· · · · · · · · · · · · · · · · · · ·					-						,∎ ⊺ ¢	191 .	195				-						
						<u> </u>	<u> </u>							1. 1 - E	AL AL		+	+-	<u> </u>					
						+-				Tel	ephone	e:+16	604 253	4168			+-		-					
		· · · · · · · · · · · · · · · · · · ·							- :							<u></u> Д	\perp							
			· · · · · · · · · · · · · · · · · · ·							Ĩ]													
Drinkind	Water (DW) Samples ¹ (client use) Special Instructions / S			king on the drop	-down list below				SAMPLE	CON	DITIO	N AS F	RECEIV	/ED (lab	use o	nly)								
-	ten from a Regulated DW System?	(electr	ronic COC only)			Froze		~ ~	Y _			ations				N	٥							
									Cubes 🔲	Custo	ody se	al intac	at Y	es	2	· · N	0							
—			>			Cooli	-	tiated	LER TEMPERA				<u> </u>											
-	human consumption/ use? Chl-a is unfiltered; plea						114			TURES	•°C			FINAL		TEMPER	ATURE	<u>sec</u>						
Y				F DECEDTION	<u></u>							<u> </u>		<u>)</u>			<u></u>							
Released by:	SHIPMENT RELEASE (client use) TR Date: May 18 2021 Time:	Received by:	NITIAL SHIPMEN	Date:	(lab use only)	Time		Receive	d hv		SHIP	Date:	RECE	PTION (lab use	only)								
Nologiacu by.	Date: May 18 2021 11116.								" M	B	. [Date.	MI	Au	1ª		< C		FAr					
REFER TO BAC	K PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATO	RY COPY YEL	Low -	CLIEN	T COPY	b				<u> </u>		<u>∸</u> f-		<u></u> 0	ALC: AFERT	2017 68 01					

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA21B7912	Page	: 1 of 2
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: Enos Lake	Date Samples Received	: 24-Aug-2021 09:00
PO	:	Date Analysis Commenced	: 25-Aug-2021
C-O-C number	: 20-922255	Issue Date	: 31-Aug-2021 16:48
Sampler	: TN, TR		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	SWMP 03 -1m	SWMP 03 -5m	SWMP 03 -9.5m	
(Matrix: Water)								
Client sampling date / time					23-Aug-2021 11:35	23-Aug-2021 11:40	23-Aug-2021 11:45	
Analyte	CAS Number	Method	LOR	Unit	VA21B7912-001	VA21B7912-002	VA21B7912-003	
					Result	Result	Result	
Anions and Nutrients								
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0042	0.0076	0.0192	
Plant Pigments								
chlorophyll a	479-61-8	E870	0.010	µg/L	3.69	7.15	9.72	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA21B7912	Page	: 1 of 5
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
Telephone	250-390-2525	Telephone	+1 604 253 4188
Project	: Enos Lake	Date Samples Received	: 24-Aug-2021 09:00
PO	:	Issue Date	: 31-Aug-2021 16:48
C-O-C number	: 20-922255		, , , , , , , , , , , , , , , , , , ,
Sampler	: TN, TR		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	:3		
No. of samples analysed	: 3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

/latrix: Water					E١	aluation: × =	Holding time excee	edance ; 🔹	= Within	Holding Tin
Analyte Group	Method	Sampling Date	te Extraction / Preparation Analys			is				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE										
SWMP 03 -1m	E378-U	23-Aug-2021					25-Aug-2021	3 days	2 days	1
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE										
SWMP 03 -5m	E378-U	23-Aug-2021					25-Aug-2021	3 days	2 days	~
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)									
HDPE										
SWMP 03 -9.5m	E378-U	23-Aug-2021					25-Aug-2021	3 days	2 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
SWMP 03 -1m	E372-U	23-Aug-2021	30-Aug-2021				31-Aug-2021	28 days	8 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	5070 11									,
SWMP 03 -5m	E372-U	23-Aug-2021	30-Aug-2021				31-Aug-2021	28 days	8 days	~
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	E372-U	22 Aug 2024	20 4				24 4.47 2024		0 days	1
SWMP 03 -9.5m	E372-0	23-Aug-2021	30-Aug-2021				31-Aug-2021	28 days	8 days	•
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE	E870	22 Aug 2024	25 Aug 2024	2 days	2 days	1	26 Aug 2024	672 bro	1 dovo	1
SWMP 03 -1m	E0/U	23-Aug-2021	25-Aug-2021	2 days	2 days	*	26-Aug-2021	672 hrs	raays	¥

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Plant Pigments : Chlorophyll-a by Fluorometry	Plant Pigments : Chlorophyll-a by Fluorometry									
Opaque HDPE SWMP 03 -5m	E870	23-Aug-2021	25-Aug-2021	2 days	2 days	✓	26-Aug-2021	672 hrs	1 days	*
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SWMP 03 -9.5m	E870	23-Aug-2021	25-Aug-2021	2 days	2 days	✓	26-Aug-2021	672 hrs	1 days	*

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluatio	n: × = QC frequ	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specificatior
Quality Control Sample Type		·	C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	275357	1	5	20.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	280037	1	3	33.3	5.0	✓
Laboratory Control Samples (LCS)							
Chlorophyll-a by Fluorometry	E870	275431	1	10	10.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	275357	1	5	20.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	280037	1	3	33.3	5.0	✓
Method Blanks (MB)							
Chlorophyll-a by Fluorometry	E870	275431	1	10	10.0	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	275357	1	5	20.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	280037	1	3	33.3	5.0	✓
Matrix Spikes (MS)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	275357	1	5	20.0	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	280037	1	3	33.3	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is
	Vancouver - Environmental			recommended to ensure test results represent conditions at time of sampling.
Chlorophyll-a by Fluorometry	E870	Water	EPA 445.0 (mod)	Chlorophyll a is determined by solvent extraction followed with analysis by fluorometry using the non-acidification procedure. This method is not subject to interferences from
	Vancouver -			chlorophyll b.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Chlorophyll-a Extraction	EP870	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	·VA21B7912	Page	: 1 of 3
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	∶105 - 1885 Boxwood Rd Nanaimo BC Canada V9S 5X9	Address	∶8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	+1 604 253 4188
Project	: Enos Lake	Date Samples Received	: 24-Aug-2021 09:00
PO	:	Date Analysis Commenced	: 25-Aug-2021
C-O-C number	: 20-922255	Issue Date	: 31-Aug-2021 16:48
Sampler	: TN, TR		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrients (QC Lot: 275357)											
KS2102670-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0053	0.0066	0.0013	Diff <2x LOR	
Anions and Nutrient	Anions and Nutrients (QC Lot: 280037)										
VA21B7912-001	SWMP 03 -1m	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0042	0.0036	0.0006	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier				
Anions and Nutrients (QCLot: 275357)									
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010					
Anions and Nutrients (QCLot: 280037)									
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020					
Plant Pigments (QCLot: 275431)									
chlorophyll a	479-61-8 E870	0.01	µg/L	<0.010					

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Spike Recovery (%) Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 275357)										
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	106	80.0	120		
Anions and Nutrients (QCLot: 280037)										
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	93.5	80.0	120		
Plant Pigments (QCLot: 275431)										
chlorophyll a	479-61-8	E870	0.01	µg/L	5 µg/L	109	80.0	120		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
nions and Nutrients (QCLot: 275357)											
VA21B7912-001	SWMP 03 -1m	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0350 mg/L	0.03 mg/L	117	70.0	130		
Anions and Nutri	nions and Nutrients (QCLot: 280037)										
VA21B7912-002	SWMP 03 -5m	phosphorus, total	7723-14-0	E372-U	0.0471 mg/L	0.05 mg/L	94.3	70.0	130		

Chain of Custody (COC) / Analytical Request Form

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

COC Number: 20 - 922255

Page of

Company: Contact: City/Province: Report To REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION PO / AFE: Job #: Are samples for human consumption/ use? Are samples taken from a Regulated DW System? ALS Account # / Quote #. Invoice To Street: Released by: S Postal Code: Contact: Company: Zhone: -(ALS use only) ALS Lab Work Order # (ALS use only): ALS Sample # -Enos Drinking Water (DW) Samples¹ (client use) 54 1 ⊡ ĕ ¢. ⊡ ă di. 3 1 1 #105-1885 Thea Rodgers + Copy of Invoice with Report Same as Report To 5 N N ø Timerich @ bcct. Com Variaino P Late SWMPDS ₹ SWWP W MP SHIPMENT RELEASE (client use) Contact and company name below will appear on the final report (onservation **Project Information** Sample Identification and/or Coordinates 0 ß (This description will appear on the report) Date: d leveren no leading 1 Baxwood F0 23 1 S B B 3 Ω traders@ 14 14 14 14 14 Abad. ¢ please filter chl-~ within TOM . 3 Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) দুম Select Report Format: A POF A EXCL. Email 2 Email 2 Received by: AFE/Cost Center: ALS Contact: Requisitioner: Email 1 or Fax Select Invoice Distribution: Email 3 Email 1 or Fax Major/Minor Code: ocation: Compare Results to Criteria on Report - provide details below if box checked elect Distribution **Oil and Gas Required Fields (client use)** Snehare INITIAL SHIPMENT RECEPTION (ALS use only) trodyers @ Lact com 50 trudgerse bcct. com Aug 23 (dd-mmm-yy) -: 200 灏 Date Reports / Recipients Invoice Recipients 125 K EMAIL WHITE - LABORATORY COPY 穀 Date: Sampler: PO# Routing Code: D MAIL 2411 140 (hh:mm) 135 ñ, Time П З for his. Ť. ×. edd (Digital) え 30 FAX Sample Type 172 water . M 2 ء ×. YELLOW - CLIENT CO 3 Time: Submission Comments identified on Sample Receipt Notification: □ Same day [22] if received by 10am M-S - 200% rush surcharge. Additional fees may apply to rush requests on weekends, statutory holidays and non-routine tests Routine [R] lif received by 3pm M+F - no surcharges apply 4 day [P4] if received by 3pm M+F - 20% rush surcharge minimum 3 day [P3] if received by 3pm M+F - 25% rush surcharge minimum NUMBER OF CONTAINERS □ 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum Cooler Custody Seals Intact: J ω Cooling Method: " Date and Time Required for all E&P TATs: ing? ρ ota â Received by: < nasphate 0) TIAL COOLER TEMPERATURES °C Turnaround Time (TAT) Requested Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below ሶ < orophyll NONE For all tests with rush TATs requested, please contact your AM to confirm availability. 隵 1/0 field SAMPLE RECEIPT DETAILS (ALS use only) ICE CE PACKS מאה השביאה און וווווווו YES ** VA ** Sample Custody Seals intact: ... FINAL SHIPMENT RECEPTION (ALS use only filtened کر چ 裔 Analysis Request 3 Uate: Vancouver **Environmental Division** Felephone: +1 604 253 4188 87 Work Order Reference VA21B7912 FROZEN ŝ 325 dd-mmm-yy hh:mm am/pm A Coo 48 100 AFFIX ALS BARCODE LABEL HERE . Ar ¥ COOLER TEMPERATURES °C . M C Ř ð ŝ COOLING INITIATED 8 8 Q С Ж ES ON HOLD ų P7 EXTENDED STORAGE REQUIRED Sec. SUSPECTED HAZARD (see notes 鑁 ž

Follure to complete all portions of this form may delay analysis. Please fill in this form LEC/BLY. By the use of this form the carr advowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form

CERTIFICATE OF ANALYSIS

Work Order	: VA21C5663	Page	: 1 of 2
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby BC Canada V5A 1W9
Telephone	: 250-390-2525	Telephone	: +1 604 253 4188
Project	: 1302015-Enos Lake 2021	Date Samples Received	: 17-Nov-2021 09:10
PO	:	Date Analysis Commenced	: 18-Nov-2021
C-O-C number	:	Issue Date	: 26-Nov-2021 13:58
Sampler	: P L, T R		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L mg/L	micrograms per litre milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	SUMP 03 - 1m	SUMP 03 - 5m	SUMP 03 - 10m	
(Matrix: Water)								
Client sampling date / time				16-Nov-2021 10:30	16-Nov-2021 10:45	16-Nov-2021 11:00	 	
Analyte	CAS Number	Method	LOR	LOR Unit VA2		VA21C5663-002	VA21C5663-003	
					Result	Result	Result	
Anions and Nutrients								
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0120	0.0069	0.0120	
Plant Pigments								
chlorophyll a	479-61-8	E870	0.010	µg/L	9.66	9.45	6.83	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Nork Order	: VA21C5663	Page	: 1 of 5
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	: Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	: 8081 Lougheed Highway
	Nanaimo BC Canada V9S 5X9		Burnaby, British Columbia Canada V5A 1W9
elephone	250-390-2525	Telephone	: +1 604 253 4188
roject	: 1302015-Enos Lake 2021	Date Samples Received	: 17-Nov-2021 09:10
0	:	Issue Date	: 26-Nov-2021 13:58
-O-C number	:		
ampler	: P L, T R		
ite			
uote number	: Q78255 - Standing offer		
o. of samples received	:3		
lo. of samples analysed	: 3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Method E378-U	Sampling Date	Ext Preparation Date	raction / Pre Holding Rec		Eval	Analysis Date	Analys Holding	Times	Eval	
E378-U					Eval	Analysis Date			Eval	
E378-U		Date	Rec	Actual			Dee		Eval	
E378-U							Rec	Actual		
E378-U										
E378-U										
	16-Nov-2021					18-Nov-2021	3 days	2 days	1	
E378-U	16-Nov-2021					18-Nov-2021	3 days	2 days	1	
E378-U	16-Nov-2021					18-Nov-2021	3 days	2 days	1	
E070 II	40.01	00 N 000 /				0.4 NL 000.4				
E372-U	16-NOV-2021	23-Nov-2021				24-Nov-2021	28 days	8 days	1	
E970 II	16 Nov 2021	22 Nov 2021				24 Nov 2021	00 daya	0 dava	1	
E372-0	10-100-2021	23-1100-2021				24-1100-2021	zo uays	o uays	•	
E372 I I	16 Nov 2021	22 Nov 2021				24 Nov 2021	29 dava	9 dava	1	
L372-0	10-1100-2021	23-1100-2021				24-1100-2021	20 uays	ouays	•	
E870	16-Nov-2021	18-Nov-2021	2 days	2 days	1	26-Nov-2021	672 hre	8 dave	1	
LUIU	10-1107-2021	10-1107-2021	z udys	z udys	•	20-1107-2021	0121115	0 udys	•	
	E378-U E378-U E372-U E372-U E372-U E372-U	E378-U 16-Nov-2021 E372-U 16-Nov-2021 E372-U 16-Nov-2021 E372-U 16-Nov-2021	E378-U 16-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021	E378-U 16-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021	E378-U 16-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021	E378-U 16-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021	E378-U 16-Nov-2021 18-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 24-Nov-2021 E372-U 16-Nov-2021 23-Nov-2021 24-Nov-2021	E378-U 16-Nov-2021 18-Nov-2021 3 days E372-U 16-Nov-2021 23-Nov-2021 24-Nov-2021 28 days	E378-U 16-Nov-2021 18-Nov-2021 3 days 2 days E372-U 16-Nov-2021 23-Nov-2021 24-Nov-2021 28 days 8 days E372-U 16-Nov-2021 23-Nov-2021	

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; •	<pre>/ = Within</pre>	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SUMP 03 - 1m	E870	16-Nov-2021	18-Nov-2021	2 days	2 days	~	26-Nov-2021	672 hrs	8 days	*
Plant Pigments : Chlorophyll-a by Fluorometry										
Opaque HDPE SUMP 03 - 5m	E870	16-Nov-2021	18-Nov-2021	2 days	2 days	1	26-Nov-2021	672 hrs	8 days	4

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	on: × = QC frequ	ency outside spe	ecification; 🗸 =	QC frequency wit	hin specification
Quality Control Sample Type		·	C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	347431	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	351015	1	4	25.0	5.0	✓
Laboratory Control Samples (LCS)							
Chlorophyll-a by Fluorometry	E870	347339	1	3	33.3	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	347431	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	351015	1	4	25.0	5.0	✓
Method Blanks (MB)							
Chlorophyll-a by Fluorometry	E870	347339	1	3	33.3	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	347431	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	351015	1	4	25.0	5.0	✓
Matrix Spikes (MS)							
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	347431	1	9	11.1	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	351015	1	4	25.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Phosphorus by Colourimetry (Ultra	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
Trace)				persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Dissolved Orthophosphate by Colourimetry	E378-U	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a
(Ultra Trace Level)				sample that has been lab or field filtered through a 0.45 micron membrane filter.
	Vancouver -			
	Environmental			Field filtration is recommended to ensure test results represent conditions at time of
				sampling.
Chlorophyll-a by Fluorometry	E870	Water	EPA 445.0 (mod)	Chlorophyll a is determined by solvent extraction followed with analysis by fluorometry
				using the non-acidification procedure. This method is not subject to interferences from
	Vancouver -			chlorophyll b.
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Chlorophyll-a Extraction	EP870	Water	EPA 445.0 (mod)	Chlorophyll-a solvent extraction.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	VA21C5663	Page	: 1 of 3
Client	: The British Columbia Conservation Foundation	Laboratory	: Vancouver - Environmental
Contact	:Thea Rodgers	Account Manager	: Sneha Sansare
Address	: 105 - 1885 Boxwood Rd	Address	:8081 Lougheed Highway
Telephone	Nanaimo BC Canada V9S 5X9 : 250-390-2525	Telephone	Burnaby, British Columbia Canada V5A 1W9 :+1 604 253 4188
Project	: 1302015-Enos Lake 2021	Date Samples Received	: 17-Nov-2021 09:10
PO	:	Date Analysis Commenced	: 18-Nov-2021
C-O-C number	:	Issue Date	: 26-Nov-2021 13:58
Sampler	: P L, T R		
Site	:		
Quote number	: Q78255 - Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit).
- RPD = Relative Percentage Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water			Laboratory Duplicate (DUP) Report											
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Anions and Nutrient	Anions and Nutrients (QC Lot: 347431)													
VA21C5606-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR				
Anions and Nutrients (QC Lot: 351015)														
VA21C5663-001	SUMP 03 - 1m	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0120	0.0108	0.0012	Diff <2x LOR				

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 347431)				
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 351015)				
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Plant Pigments (QCLot: 347339)					
chlorophyll a	479-61-8 E870	0.01	µg/L	<0.010	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report									
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 347431)											
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	95.3	80.0	120			
Anions and Nutrients (QCLot: 351015)											
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	104	80.0	120			
Plant Pigments (QCLot: 347339)											
chlorophyll a	479-61-8	E870	0.01	µg/L	5 µg/L	102	80.0	120			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report												
				Spi	ike	Recovery (%)	Recovery								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
Anions and Nutri	Anions and Nutrients (QCLot: 347431)														
VA21C5606-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0372 mg/L	0.03 mg/L	124	70.0	130						
Anions and Nutri	ents (QCLot: 351015)														
VA21C5663-002	SUMP 03 - 5m	phosphorus, total	7723-14-0	E372-U	0.0504 mg/L	0.05 mg/L	101	70.0	130						

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

www.alsolobal.com

 $\operatorname{COC Number:} 20 - 978569$

Page of

Failure to complete all p	Released by:		Are samples for hur		Are samples taken	Drinking		e e	, 7 Æ	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	1 1 1 1			19 19	ί.	3 2	See 4		ALS Sample # (ALS use only)	ALS Lab Work		LSD:	PO / AFE:	01061 # dol	ALS Account # / Quote #		Contact:	Company:		Invoice To	Postal Code:	City/Province:	Street:		Phone:	Contact:	Company:	Report To
WHITE - LABORATORY COPY YELLOW - CLIENT COPY	IR Date: 6 NOV.	SHIPMENT RELEASE	Are samples for human consumption/ use?	B	Are samples taken from a Regulated DW System?	Drinking Water (DW) Samples ¹ (client use)										SWAR 03 - 10M	Swal 03 - 5m	SWMP 03 - Im	Chis description will appear on the report	ALS Lab Work Order # (ALS use only):				100# 1302015 - Enos Loke 2021	Quote #	Project Information			Copy of Invoice with Report	Same as Report To	LIGS SX9	Nana ima, RC.	4105-1885 BOXWOOD Rd	Company address below will appear on the final report	250-390-2525	Thea Rodaers	BC conservation Foundation	Contact and company name below will appear on the final report
-ORMATION form LEGIBLY. By the use of this f	1400		Thanks	Uni-a is u	;•	Notes / Specify I													appear on the report)	1900 - A	¢7.			N	A		E		E S	NO		Π						ar on the final report
form the user acknowledg	Received by:			MANIELE, PRASE SHIP	nsiltered	Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)														ALS Contact:		Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:	Oil a		Email 1 or Fax 🕂 🕇	Select Invoice Distribution:		Email 3		Email 1 or Fax 🕂	Select Distribution:	Compare Results to	Merge QC/QCI Reports with COA	Select Report Format:	
WHITE ges and agrees with the T		*** INITIAL SHIPMENT RECEPTION (ALS use only) 🚿		prive serve	nhice fith	t evaluation by selecting fi (Excel COC only)									•	11-21	1-11-21	1-11-21	(dd-mmm-yy)	ĨĊ				R	٩	Oil and Gas Required Fields (client use)	limericke bect lon	tradarse back com	oution: 😿 EMAIL	Invoice Recipients			tradaers e back com		P		- [Reports / Recipients
WHITE - LABORATORY COPY with the Terms and Conditions as sp	Date:	ECEPTION (ALS u		(<48 his)	1 a.s.a.p	rom drop-down belo											~ \	0000	(hh:mm) S					Routing Code:	PO#	ields (client use)	ccf, Com	cf com	- I MAIL I FAX	pients			Ccf. Com	MAIL FAX	ide details below if box		K Excel 🔲 EDD (DIGITAL)	ipients
specified on the bad	, set		. Ale							-						1	water 13	water .	Sample Type										×									
LOW - CLIENT COPY the back page of the whi	Time: 🍬	1		Cooler Custody Seals Intact:	Submission Comments identified on Sample Receipt Notification.**	Cooling Method:										ひく	3	در ک		000	_		- C	<u>ол</u> 2 (1Τ. (79	~~~		₹S			Date an	may apply t		2 day [P2]			Routine [R]	
ρΥ white - report α	Received by:	2		idy Seals In	Comments i											くく	くく	<i>९</i> ८	701 00	al thu	P øn	Ø	h	nte	2(a	a.	P)	Indica		Fa	Date and Time Required for all E&P TATs:	o rush requests	Same day [E2] If received by 10am M-S -	if received by	if received by	4 day [P4] if received by 3pm	Routine [R] if received by 3pm M-F - no surcharges apply	Turnaro
хору.	100	W	RIEMPERA	tact	dentified o	NOME *								_				 										te Filtered (F)		r all tests with	red for all E8	s on weekends	by 10am M-S	/3pm M-F-1	3pm M-F -	M -F -	3pm M-F -	und Time (
	2	FINAL SH	TURES °C		n Sample F	SAMI-EETTEC		1							<	<u>ر س</u>	ې : ا ا					•.						, Preserved (F		rush TATs req	P TATs:	, statutory holi	- 200% rush	50% rush sur m% rish sur	25% rush sur	20% rush suro	no surcharges	Turnaround Time (TAT) Requested
	Date:/	IPMENT R	2] N/A ≱Sa	eceipt Noti	SAMP ELETAILS (ALS use only)									Work Ord													Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	Analysis Request	uested, please		may apply to rish requests on weekends, statutory holidays and non-routine tests	200% rush surcharge. Additional	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 1 day [F1 if received by 3pm M-F - 100% rush surcharge minimum	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum	20% rush surcharge minimum	Aldde	sted
	700	ECEPTION		Imple Custo	fication:	ILS (ALS US		4 604 253				1 W.	 - 	22	rder Ref													nd Preserved	equest	contact your A	dd	outine tests	unal fees		_			
	Date 17 Nov 2021	FINAL SHIPMENT RECEPTION (ALS use only) **	FINAL COOLER TEMPERATURES °C	N/A Sample Custody Seals Intact:				4188			3	5	(VA21C5663	erence	Environmental Division												(F/P) below		For all tests with rush TATs requested, please contact your AM to confirm availability.	dd-mmm-yy litrinin am/pai	<u>م</u> .	÷			N.	đ.	e e
			TEMPERATU	ntact:										ີ []		-	- 						-			_				ailability.	hinm am/	ýe.	an a	(vra asn oliny)	S BARCOD	ale.	19. 19.	đ
~	Tque o	Å.	URES °C		S In the								_																		pn	<i>.</i> ,	2 8	2	DE LABEL			den se
NUG 2020 FRONT	am .	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	D N/A	老 		•													PECT								_				i.	5 	7 7	HERE			

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW CDC form.

Appendix 2

Limnologist's Report

Enos Lake Protection and Monitoring Program: Review of 2021 Water Quality Data

From PGL, 2016

For: BC Conservation Foundation, Lantzville Office

PO Box 7

Lantzville, B.C.

VOR 2H0

By: John Deniseger

December 2021

Summary

BCCF's Enos Lake annual fundamental water quality monitoring program was once again completed in 2021. The program includes components that are done annually and others that are done on a 5-year cycle. This report examines the results from the annual component collected in 2021, and compares them to water quality targets and trophic status indicators for Enos Lake.

In 2021, the extreme summer drought appeared to exacerbate the annual summer anoxic conditions at depth. As a result, the lack of oxygen extended up into the relatively shallow waters of the thermocline. While it is not known whether this has occurred prior to 2017, it is concerning, as the lake was more susceptible to a summer "fish kill". Climate change will present further challenges as summer water temperatures increase, summer stratification will begin earlier and extend later, with more severe oxygen depletion as was seen in 2021.

In 2021, Enos Lake would be considered a mesotrophic lake based on indicators such as phosphorus and chlorophyll a. Factoring in year-to-year variability and the lack of oxygen at depth during the summer, the data collected over the last 5 years suggests that Enos Lake is mesotrophic, on the edge of being considered eutrophic.

1.0 Background

Enos Lake is a small lake with a surface area of 18 ha and a watershed area of approximately 235 ha. It is in a largely undeveloped area of the Fairwinds Community in Nanoose Bay, B.C. Approximately 12 ha have been developed with predominantly low-density residential housing (PGL, 2016, Nordin 2017).

While some water quality sampling has been carried out since 2006, a standardized sampling program was established in 2017. Sampling history prior to 2017 is further outlined in Nordin (2017). The 2018, 2019 and 2020 data are reviewed in Deniseger (2018, 2019, 2020).

The current water sampling program is intended to build a consistent, long-term database used to both act as a screening tool and to help assess the overall health of Enos Lake with respect to ongoing development, land use, and increasing population within the watershed over the next 10 to 20 years. Fundamental water chemistry and biology are indicators of water quality, potential change, and overall lake and watershed health. The data will be used to assess year-to-year lake health and trends over time.

The purpose of this report is to review the data collected in 2021 and provide a summary report documenting any changes or potential trends observed since 2017.

2.0 Water Quality Results

Table 2.0 below (PGL, 2016) outlines the standardized water quality monitoring which began in 2017. It also lays out the targets used to assist the interpretation of the water quality results for the various parameters.

P	arameter (units)	Water Quality Target	Future Monitoring ^a
ŧ	Secchi Depth (m)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
(profiles at ents)	Dissolved Oxygen (mg/L and % saturation)	 ≥5 mg/L epilimnion ≥2 mg/L hypolimnion 	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
	Conductivity (µS/cm)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
Parameters increme	Temperature (°C)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
d Par	pН	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
Field	Redox (mV)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually
	E. coli (# per mL)	BC Water Quality Guidelines (recreation – secondary contact)°	August 2017: 5 times in 30 days. Surface sample from SWMP-03 and any two shoreline locations. Repeat on 5 year increment.
ø	PAHs (µg/mg)	BC Water Quality Guidelines (freshwater sediments)	August 2017: surface sediment from three locations: SWMP-06, SWMP-04 and SWMP-03.
Parameters	Metals (various)	BC Water Quality Guidelines (total metals, freshwater aquatic life). Both average and short-term maximum guidelines apply, where applicable.	February 2017 and August 2017: five samples in a 30 day period. Each sample to occur at three depths from SWMP-03. Sampling to be repeated on five year increments.
Laboratory	Chlorophyll a (µg/L)	Avoid any increase	Quarterly sampling at site SWMP-03, starting in 2017, and repeated annually. Samples to be taken from three depths (surface, mid, deep water)
Lab	Hardness (as CaCO ₃)	None – required to interpret metals data	February 2017 and August 2017: five samples in a 30 day period. Each sample to occur at three depths from SWMP-03. Sampling to be repeated on five year increments. Data required to interpret metals concentrations.
	Phosphorous (mg/L)	12 μg/L	Quarterly sampling at site SWMP-03, starting in 2017. Samples to be taken from three depths (surface, mid, deep water)

Table 2.0 Summary of Water Quality Monitoring Program for Enos Lake (PGL, 2016)

^aFuture monitoring is limited to the scope being taken on by the Developer and will continue until at least one year post build-out within the Enos Lake watershed. It is anticipated that some form of longer term monitoring will be undertaken by RDN in support of long term operation of stormwater infrastructure. ^bQuarterly sampling is defined as February, May, August, and November.

°It is assumed that swimming will not be a recreational use of Enos Lake. If that assumption is incorrect, primary contact guidelines should apply.

2.1 Secchi Depth

Secchi depth is a standard measure of water clarity, providing insight into lake health and productivity from both an aesthetic and ecological perspective. During storm events, it can also be used to qualitatively assess the transport of fine sediment from the watershed into the lake.

The 11 data points collected in 2017 showed substantial variation from 1.4 to 4.8 m with an average of 3 m. Due to the inherent variability in secchi data, Nordin (2017) recommended that the base sampling program include monthly secchi data collection.

In each of 2018 and 2019, only 5 data points were collected, ranging from 2.0 to 3.5 m, and 1.5 to 2.8 m, respectively.

More secchi measurements have been collected in 2020 and in 2021. In 2020, secchi depth ranged from 1.0 to 4.3 m, with an annual average of 2.7 m. In 2021, the 13 data points ranged from a low of 0.8 m in late February to a high of 4.0 m in late August with a mean of 3.0 m. This was very similar to the previous year's readings. In both years, the low February secchi reading is likely indicative of an early spring phytoplankton bloom.

An additional low reading on November 16th reflects the preceding heavy rainfall event and subsequent surface runoff likely carrying fine sediment. The lake was described as being "high and light brown" in colour.

Date	Secchi (m)
Feb 7	1.8
Feb 23	0.8
May 18	3.3
May 30	3.4
June 20	3.8
July 3	2.6
July 28	3
Aug 3	3.3
Aug 10	3.5
Aug 15	4
August 23	3.9
Aug 29	3.7
November 16	1.7

Annual mean 3.0 m

2.2 Temperature

Field data collection in 2021 included temperature, dissolved oxygen, pH, conductivity and redox potential profiles taken quarterly at station 03, the mid-lake sampling station.

Lake temperature has fundamental effects on a lake's seasonal response and susceptibility to watershed activities and disturbance. Thermal stratification is an important factor in understanding fundamental lake ecology and natural processes. Table 2.1 summarizes the lake temperature profiles for 2021. The late February profile shows the lake to be effectively isothermal, unstratified and mixing. The water temperature was 1.5 to 2 degrees C cooler than in February 2020. This is a reflection of more normal precipitation and weather patterns in early 2021 as well as the relatively drier and warmer patterns prevalent in February 2020. By May, the profile indicates well established stratification with a shallow upper warm layer (epilimnion) about 3 meters deep overlying a deeper cool layer(hypolimnion). The transition zone between the two layers is known as the thermocline – it is defined by having a change of greater than 1 C per meter of depth change. The overall difference from top to bottom was 10.6 C. In August, the upper 3 meters of Enos Lake were greater than 21 C, with a very steep, compressed thermocline, particularly between 4.5 and 6 meters but continuing to 8m in depth. The strong thermocline is continuous at least from mid-spring through early fall, effectively isolating the deeper waters of the lake. The surface water was 13.6 C warmer than the deepest waters of the lake. The very compressed nature of the August 2021 thermocline reflects the extremely dry and hot summer of 2021, including the late June "heat dome" event when local air temperatures were between 35 and 40 C for a number of days. While no Enos Lake data was collected during the "heat dome", surface water temperatures would have been increasing relatively quickly.

In contrast to the extreme summer drought, by mid-September, the weather patterns "flipped" completely to initially provide much needed rainfall, followed by a series of storms and rain events culminating in severe flooding in coastal B.C. in mid to late November. The November 23rd sampling

immediately followed the most severe of these coastal rain events. While the data confirmed that the lake was once again isothermal, unstratified and mixing (it had likely been so for quite some time), the lake was also described as "high and light brown in colour, reflecting the heavy rain and the deposition of fine sediment from surface runoff entering the lake. Enos Lake's general thermal stratification patterns appear to be fairly typical of small, east coast Vancouver Island lakes.

Profile - Site SWMP-03											
	2/23/2021	5/18/2021	8/23/2021	11/16/2021							
Depth (m)	Temp. (°C)	Temp. (°C)	Temp. (°C)	Temp. (°C)							
0.5	3.9	17.9	21.5	8.1							
1	3.7	17.9	21.5	8.1							
2	3.8	17.7	21.5	8.0							
3	3.8	17.1	21.4	8.0							
3.5		14.8		8.0							
4	3.8	12.3	20.7	8.0							
4.5			19.3	8.0							
5	3.8	10.6	15.6	8.0							
6	3.8	9.3	11.8	8.0							
7	3.8	8.3	9.6	8.0							
8	3.8	7.8	8.6	8.0							
9	3.8	7.5	8.1	8.0							
10	3.8	7.4	8.0	8.0							
11	3.8	7.3	7.9	7.9							
12				8.0							

Table 2.1 Enos Lake temperature profiles for 2021

2.3 Dissolved Oxygen

See tables 2.2 and 2.3 for dissolved oxygen concentrations and percent saturation.

The late February sampling was done when the lake was isothermal with temperatures from 3.7. to 3.8 C (see table 2.2). Dissolved oxygen levels were high, consistently greater than 11.6 mg/L, with saturation from 88 to 96.5%. Overall, this reflects isothermal conditions and subsequent mixing throughout the water column. The relatively high saturation levels may be influenced by a phytoplankton bloom occurring in the early spring, as indicated by both the chlorophyll a and secchi data. Significant "blooms" can result in daytime oxygen supersaturation in lake waters.

The May sampling indicates a stratified lake with a thermocline between 3 and 7 meters deep, with significant oxygen depletion below 9 meters and greater than 80% saturation above 5 meters. Saturation levels decrease quickly below 7 meters, with very low oxygen below 8 meters.

The August 2021 profile indicates a warm layer of surface water down to 4 meters, with a deeper, very steep thermocline down to 8 meters. This steep thermocline effectively isolates the deeper, denser colder waters of the lake, so that very little mixing and replenishment occurs. Decomposition of organic

matter in the deeper waters is gradually consuming the oxygen present below the thermocline. As a result, there is severe oxygen depletion in the deeper waters of the lake. In 2020, there was oxygen depletion below 6 meters. In 2021, the deeper waters of the lake below 5 meters were virtually anoxic, with oxygen depletion creeping up into the thermocline. It is highly likely that the summer drought and heat has exacerbated the lack of oxygen at depth.

The November profile reflects isothermal conditions due to the breakdown of the thermocline with dissolved oxygen levels greater than 9 mg/L throughout the water column and dissolved saturation ranging from 78.2 to 84.8%.

In the epilimnion layer (above the thermocline), the water quality target for dissolved oxygen is greater than 5 mg/L. This target was met in each sample set. Below the thermocline in the hypolimnion, the target is 2 mg/L. This target was not met during the late spring and not met through the summer (May through August at least) and likely well into the fall. The August 23rd data was particularly concerning as the lake was virtually anoxic below the mid-point of the thermocline. This is indicative of a productive lake with insufficient mixing/inflow, substantial organic decomposition at depth, as well as internal loading and subsequent release of phosphorus from the sediments.

Profile - Site S	WMP-03			
	2/23/2021	5/18/2021	8/23/2021	11/16/2021
Depth (m)	D.O. (mg/L)	D.O. (mg/L)	D.O. (mg/L)	D.O. (mg/L)
0.5	12.73	8.32	7.41	9.85
1	12.51	8.54	7.44	9.94
2	12.32	7.64	7.29	9.65
3	12.31	8.08	7.24	9.48
3.5		9.52		
4	12.20	10.39	7.05	9.54
4.5			6.55	
5	12.29	9.17	4.56	10.03
6	12.33	8.98	0.21	9.83
7	11.93	7.30	0.11	9.89
8	12.00	5.50	0.07	9.58
9	11.79	2.83	0.05	9.65
10	11.63	1.08	0.05	9.22
11	11.69	0.57	0.05	9.74

Table 2.2 Enos Lake Dissolved Oxygen concentration profiles for 2021

Profile - Site	Profile - Site SWMP-03 dissolved oxygen (% saturation)			
	2/23/2021	5/18/2021	8/23/2021	11/16/2021
	D.O.	D.O.	D.O.	D.O.
Depth (m)	(%saturation)	(%saturation)	(%saturation)	(%saturation)
0.5	96.5	87.8	86.1	84.0
1	94.8	90.0	84.8	83.8
2	93.5	80.2	81.2	81.4
3	93.4	83.7	81.9	80.4
3.5		94.5		
4	92.7	97.2	78.6	80.4
4.5			70.8	
5	93.3	82.1	45.6	84.8
6	93.9	78.2	2.1	83.6
7	90.3	62.2	1.0	83.5
8	91.0	46.3	0.6	81.0
9	89.6	23.6	0.5	80.8
10	88.3	9.0	0.4	78.2
11	88.7	4.8	0.4	82.0

Table 2.3 Enos Lake Dissolved Oxygen saturation profiles for 2021 (from Standard Methods for the examination of water and wastewater)

2.4 Conductivity

As a simple measure of dissolved ions in the water, conductivity is a general indicator of lake health and watershed disturbance, in support of other data.

The profile for late February when the lake was not stratified showed minimal variability ranging from 117.8 to 118.3 μ S/cm. In May, conductance ranged from 112.5 μ S/cm to 121.0 μ S/cm. In August, conductance behaved differently, exhibiting 3 fairly distinct layers; the epilimnion above the thermocline was consistently at 137.2 to 137.3 μ S/cm, before decreasing through the thermocline ranging from 121.4 μ S/cm to 126.0 μ S/cm. Below the thermocline, conductance steadily increased from 131.9 μ S/cm at 8 m to 151.7 μ S/cm at 11 m. In November, the lake was once again effectively isothermal, and conductance showed minimal variability ranging from 122.1 μ S/cm to 122.8 μ S/cm with the exception of 146.3 μ S/cm at 12 m, likely just above the sediment/water interface. While there is some year-to-year variability, the overall trends appear to be similar from year to year. The relative lack of summer rain and inflow to the lake produces a strong thermocline, which limits vertical mixing in the lake. Decomposition in the hypolimnion results in anoxic or near anoxic conditions at depth, which in turn results in internal loading of phosphorus. Evaporation at the lake surface results in an increase in conductance, while an accumulation of dissolved ions and organic matter at depth increases conductance in the hypolimnion.

Overall, conductivity appears to be within the range to be expected for this area, given the precipitation, watershed runoff and previous data (Nordin, 2017).

Profile - Site SWN	/IP-03			
	2/23/2021	11/16/2021		
Dopth (m)	Conductivity	Conductivity	Conductivity	Conductivity
Depth (m)	(μS/cm)	(µS/cm)	(μS/cm)	(μS/cm)
0.5	118.1	117.7	137.2	122.5
1	117.9	117.7	137.2	122.6
2	117.8	117.6	137.2	122.5
3	117.9	117.1	137.3	122.7
3.5		114.9		
4	117.9	112.8	134.8	122.7
4.5			126.0	
5	117.9	112.5	121.4	122.7
6	117.8	112.5	122.5	122.7
7	117.9	113.0	124.2	122.8
8	117.9	114.2	131.9	122.8
9	117.9	117.5	144.9	122.4
10	117.9	120.7	149.4	122.1
11	118.3	121.0	151.7	121.7
12				146.3

Table 2.4 Enos Lake conductivity profiles for 2021

2.5 pH

Enos Lake pH data is summarized in table 2.5 below

In both 2018 and 2019, pH data was limited due to equipment issues. Since then, the pH data collection and quality has improved considerably. In 2021, pH ranged from 6.25 to 7.92, a similar range to that found in 2020. In February, pH reflected the isothermal conditions present. In May, pH was somewhat higher in the surface waters, decreasing from 7.31 at 4 m to 6.36 at 11 meters, a decrease of 0.95 pH units. As was the case in 2020, a similar but more pronounced decrease was observed in August 2021 with pH values ranging from 7.80 to 7.92 above the thermocline, before rapidly declining through the upper thermocline to 6.33 at 6 m, remaining remarkably consistent to the lake bottom at 11 m

In November, the lake had returned to isothermal conditions, with slight pH fluctuation down to 11 meters in depth. There was a decrease of about 0.5 pH units to 6.47 at 12 meters, likely reflecting conditions just above the sediment/water interface.

The pH trends with depth, which were most pronounced in May and August, may be related to phytoplankton blooms, gradual oxygen depletion and internal loading at depth. In eutrophic lakes, photosynthesizing phytoplankton blooms can raise pH levels in the surface waters. At depth, the bacterial decomposition of organic matter consumes oxygen and releases acidic byproducts, which can cause pH to decrease.

Profile - Site SW	/MP-03			
	2/23/2021	5/18/2021	8/23/2021	11/16/2021
Depth (m)	pH (pH units)	pH (pH units)	pH (pH units)	pH (pH units)
0.5	7.08	7.28	7.86	6.73
1	7.00	7.41	7.92	6.79
2	6.86	7.42	7.91	6.83
3	6.81	7.19	7.91	6.85
3.5		7.32		
4	6.81	7.31	7.80	6.88
4.5			7.51	
5	6.81	7.08	7.12	6.92
6	6.84	6.88	6.33	6.95
7	6.86	6.74	6.33	6.97
8	6.88	6.56	6.30	6.98
9	6.90	6.47	6.26	6.99
10	6.94	6.40	6.25	6.99
11	6.94	6.36	6.29	7.00
12				6.47

Table 2.5 Enos Lake pH profiles for 2021

2.6 Redox

Enos Lake redox data is summarized in table 2.6 below

Redox potential (sometimes referred to as ORP) measures the lake's ability to be in balance while breaking down organic waste products such as dead and decaying plant matter and plankton. When redox values remain higher, there is lots of oxygen in the water reflecting a balance between lake productivity, watershed health and available oxygen. In general, the higher the redox values, the healthier the lake is, so that bacteria can break down organic matter more efficiently. However, even in healthy lakes, there is generally less oxygen as you approach the bottom sediments, a reflection of the bacterial activity in the sediments.

Over time, there can be an accumulation of slowly decomposing organic matter on the lake bottom, which will further drive the redox and oxygen levels down. This is not a healthy environment for fish or other aquatic organisms. In healthy lakes, redox potential values often range from 300 to 500 mV. In poorly oxygenated water, such as the deeper water of stratified lakes or the sediment of eutrophic lakes, the redox potential will be low (less than 100 mV or even negative values). When redox is low, dissolved oxygen is low, and phosphorus is released from the sediments. This is often referred to as "internal loading" of phosphorus, a process which further exacerbates the eutrophication of lakes, making recovery more difficult. Enos Lake is particularly susceptible to internal loading due to its strong

summer thermocline, which limits vertical mixing, and lack of significant summer inflows due to the generally dry summers typical of the area.

While phosphorus is released from the sediments into the water column during the summer months, it is reabsorbed by the sediments when the thermocline breaks down as the lake cools and mixes during the fall. The process repeats itself annually, as it recycles much of the phosphorus through the lake.

While redox potential can only be measured in the field, it can frequently be a challenge. Redox reactions are slow to equilibrate in the natural environment so that the readings are often considered "semi-quantitative". Probes need frequent maintenance, can have a relatively short shelf life and can become very slow to respond in the field as they age. In 2021, redox data was collected as part of each sampling event.

Profile - Site	SWMP-03		-	
	2/23/2021	5/18/2021 8/23/2021		11/16/2021
Depth (m)	Redox (mV)	Redox (mV)	Redox (mV)	Redox (mV)
0.5	188.3	187.0	181.8	222.3
1	199.2	186.5	179.6	220.0
2	212.9	186.9	179.4	217.1
3	224.0	.0 190.2 178.0		215.6
3.5		181.4		
4	232.4	198.3	179.9	213.4
4.5			183.9	
5	236.4	191.7	188.3	210.4
6	242.6	200.2	207.5	208.4
7	246.2	205.2	208.1	206.4
8	249.6	208.3	183.0	205.2
9	252.1	210.5	52.6	204.3
10	255.9	212.0	-64.6	203.5
11	257.9	211.5	-138.8	201.8
12				67.0

Table 2.6 Enos Lake redox potential profiles for 2021

The redox potential data collected in 2021 is shown above in Table 2.6. The February data is indicative of a well oxygenated water column and the lack of a thermocline. The May data is surprising as it is also indicative of a well oxygenated water column, despite the lack of oxygen at depth. This may indicate a redox probe that is slow to respond due to fouling or aging. The August redox data remained consistently high to 8 meters, despite the anoxic conditions measured below 5 meters. Again, it may indicate a slow to respond redox probe. Regardless, the redox measurements below 8 meters reflected the lack of oxygen at depth, confirming "internal loading" of phosphorus from the sediments. Not surprisingly, the November data once again reflected a well oxygenated water column, other than the 12 meter reading, which likely reflects a measurement taken near the sediment water interface.

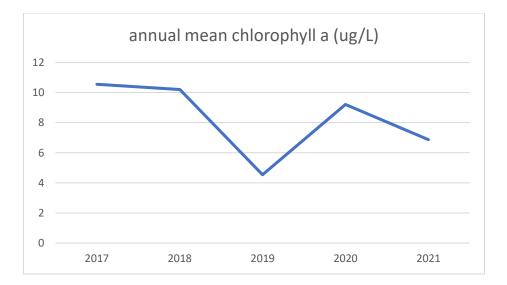
2.7 Chlorophyll a

Enos Lake chlorophyll a data is summarized in table 2.7 below

Chlorophyll a is a measure of the algal pigments in lake water and is used to assess overall lake biological productivity.

Interestingly, all of the chlorophyll a data in 2021 was less than 10 ug/L, while in 2020, 8 of 12 samples were higher than 10 ug/L. The more moderate chlorophyll a in 2021 is also reflected in the consistently slightly deeper secchi readings (3 to 4 meters) taken from May through August. As a result, the 2021 annual mean of 6.87 ug/L is the 2nd lowest of the last 5 years.

General trophic status classification using chlorophyll a is based on: <2 ug/L indicates an oligotrophic lake; 2 to 7 ug/L indicates a mesotrophic lake; >7ug/L indicates a eutrophic lake. Enos Lake's 2021 mean concentration of 6.87 ug/L was indicative of a mesotrophic or moderately productive lake, as was the case in 2019.


A further target for Enos Lake was to avoid any increase in chlorophyll a over time. Based on the data gathered over the last 5 years, this target has thus far been met.

SWMP-03 - chlorophyll a ug/L				
	2/23/2021	5/18/2021	8/23/2021	11/16/2021
Depth (m)				
1	7.38	1.95	3.69	9.66
5	6.92	3.87	7.15	9.45
9.5		6.99	9.72	
10	8.89			6.83
Daily mean	7.73	4.27	6.85	8.65
Annual mean	6.87			

Table 2.7a Enos Lake chlorophyll a data for 2021

Table 2.7b Enos Lake Daily and Annual mean chlorophyll a data for 2017 to 2021

SWMP-03 - chlo	SWMP-03 - chlorophyll a ug/L DAILY MEAN AND ANNUAL MEAN				
	FEBRUARY	MAY	AUGUST	NOVEMBER	ANNUAL MEAN
2017	11.9	9.82	13.78	6.69	10.55
2018	8.6	8.4	12.4	11.5	10.2
2019		6.61	4.14	2.87	4.54
2020	10.3	2.69	10.9	12.9	9.2
2021	7.73	4.27	6.85	8.65	6.87

2.8 Phosphorus

In lakes, phosphorus is an important nutrient and a key indicator of lake productivity. Excessive phosphorus can result in significant algal blooms and subsequent low dissolved oxygen levels, impacts on drinking water, fish health and recreational use. The water quality target for Enos Lake appears to be an annual average total phosphorus of 12 ug/L. In 2021, the annual average of 10.7 ug/L did meet the target – for the 3rd successive year, well below the 2017 and 2018 averages of 19 and 16.6 ug/L, respectively.

In 2017 and 2018, very high phosphorus values were found through the summer and fall, particularly at depth, likely an indication of a prolonged oxygen deficit in the hypolimnion and subsequent internal loading of phosphorus from the lake sediments. Concentrations between 20 and 40 ug/L were not uncommon. In 2021, the highest concentrations were measured at depth in May (15.7 ug/L) and in August (19.2 ug/L), reflecting internal loading of phosphorus. However, over the last 3 years, there have been no phosphorus measurements higher than 20 ug/L. In both 2019 and 2020, the summer weather included reasonable precipitation which would have provided some inflow and limited surface replenishment. In 2021, on the other hand, there was virtually no rain from mid-June through mid-September. It would appear that phosphorus levels have been lower over the last 3 years, regardless of the summer precipitation patterns.

Another method of evaluating lake trophic status is based on the assessment of total phosphorus. In lakes with longer residence times (>1 year), the assessment is based on concentrations at spring overturn, prior to the establishment of a thermocline. In lakes with shorter residence times (<1 year), it is based on an annual mean. Lakes are considered to be oligotrophic if total phosphorus is less than 10 ug/L; mesotrophic when ranging from 10 to 30 ug/L; and eutrophic when greater than 30 ug/L. Using this assessment method, Enos Lake would be considered mesotrophic in 2021, 2020, and in both 2017 and 2018, but oligotrophic in 2019.

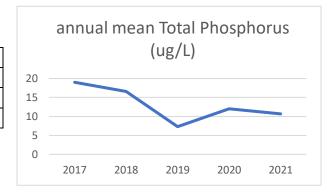

Site SWMP-03 - total Phosphorus ug/L				
	2/23/2021	5/18/2021	8/23/2021	11/16/2021
Depth (m)				1
1	13.9	6.3	4.2	12
5	11.6	9.4	7.6	6.9
9.5		15.7	19.2	12
10	9.3			
Annual				
mean	10.7			

Table 2.8 Enos Lake total phosphorus data for 2021

Table 2.9 Enos Lake orthophosphate data for 2021

Site SWMP-03 – Orthophosphate ug/L					
	2/23/2021	5/18/2021	8/23/2021	11/16/2021	
Depth (m)					
1	1.1	<1	<1	<1	
5	<1	<1	<1	<1	
9.5		<1	<1	<1	
10	<1				

Site SWMP-03 – total phosphorus ug/L				
ANNUAL MEAN				
2017	2018	2019	2020	2021
19	16.6	7.3	12.0	10.7

3.0 Discussion

The primary intent of the annual portion of the Enos Lake monitoring program is to gain insight into the current status and trends in lake productivity. This is important in that watershed disturbance and land use, together with climate change impacts, have the potential to shift the lake's trophic status. As lakes become more eutrophic (more biologically productive), algal blooms (including blue green algal blooms) can become more prevalent leading to lower dissolved oxygen levels, impaired water quality, and impacts on recreational use and drinking water. There are examples of lakes on the east coast of Vancouver Island and the Gulf Islands where this has occurred. Once lakes become eutrophic or

hypereutrophic, it is very difficult to reverse this process. Prevention is a far more effective tool in protecting lake water quality.

The summer of 2021 was characterized by an extreme drought with virtually no rain for 3 months from mid-June to mid-September. There were also periods of substantially warmer weather such as the late June "heat dome" with daytime temperatures approaching 40 C. This resulted in a very steep and compressed thermocline as measured in August. While the epilimnion dissolved oxygen target was met, the hypolimnion target was once again not met. Of concern however, was the lack of oxygen not only below the thermocline, but well up into the thermocline in late August. This has not been seen in previous years. If this continues or worsens, the lack of oxygen through the thermocline may make Enos Lake susceptible to a late summer "fish kill" given the right atmospheric conditions: low atmospheric pressure and windy conditions in late summer may bring relatively shallow anoxic water to the surface. The resulting mixing could result in low oxygen levels throughout the water column. If fish cannot find a layer of sufficient oxygen, a "fish kill" may occur.

Chlorophyll a, total phosphorus and secchi depth are fundamental indicators used to assess lake trophic status. The secchi depth data has consistently suggested that Enos Lake is eutrophic or on the edge of mesotrophic and eutrophic. While total phosphorus continues to accumulate at depth due to internal loading, from spring through early fall, concentrations over the last 3 years are only about 1/3 to 1/2 of what was measured in 2017 and 2018.

Mean annual average chlorophyll a data for 2021 classified Enos Lake as mesotrophic, as was the case in 2019. For the 3rd consecutive year, the total phosphorus target of 12 ug/L was met, while the annual average suggested that Enos Lake was a mesotrophic lake. Not surprisingly, chlorophyll a and total phosphorus appear to be following a similar pattern over the last 5 years. The highest concentrations were in 2017 and 2018, followed by a substantially lower value in 2019 and more moderate levels in 2020 and 2021. It is beyond the scope of the data collected to determine what might explain this. The overarching target of no increase in chlorophyll a over time is currently being met.

Table 3.1 Year to year status of key indicators and targets

	2017	2018	2019	2020	2021
Secchi	mesotrophic/eutrophic	eutrophic*	eutrophic*	eutrophic	mesotrophic/eutrophic
Dissolved oxygen					
at epilimnion –					
target of >5 mg/L	Target met	Target met	Target met	Target met	Target met
Dissolved oxygen					
at hypolimnion –				Target not	
target of >2 mg/L	Target not met	Target not met	Target not met	met	Target not met
Chlorophyll a	eutrophic	eutrophic	mesotrophic	eutrophic	mesotrophic
Chlorophyll a		No increase ove	er time		met
				Target just	
		Target not met	Target met –	met-	Target met –
Total phosphorus	Target not met –	 indicates 	indicates	Indicates	indicates mesotrophic
target of 12 ug/L	indicates mesotrophic	mesotrophic	oligotrophic	mesotrophic	

*Preliminary assessment as insufficient data collected

Weather patterns for the summer of 2021 were extreme, with virtually no rainfall and high temperatures. It is anticipated that summers such as this will become more common due to climate change. In a typical summer, the dissolved oxygen target at depth is not met. During the prolonged summer drought of 2021, the lack of oxygen at depth progressed well upwards into the thermocline, potentially making Enos Lake susceptible to a "fish kill". It is not known if the conditions observed this year have occurred in the past. Regardless, they are likely to re-occur more frequently in upcoming years. In contrast to the summer drought, the "flip" to much cooler, wetter conditions fortunately arrived by mid-September, earlier than is sometimes seen.

While there is year-to-year variability in Enos Lake water quality, there are a number of constants: strong summer stratification; low dissolved oxygen at depth, and internal loading of phosphorus during the summer months. Secchi depth, chlorophyll a and total phosphorus levels appear to indicate that Enos Lake is moderately productive, not far from becoming eutrophic. There may be a slight downward trend in both chlorophyll a and total phosphorus since 2018.

Existing water quality and increasing climactic extremes make Enos Lake very susceptible to watershed disturbance impacts. If Enos Lake gradually becomes more eutrophic to hyper-eutrophic, it will be very difficult to restore the lake. Coupled with summer droughts, fish kills could become more likely. It is far more effective to apply preventative best management practices to protect and maintain Enos Lake water quality.

4.0 Recommendations

The increased Secchi depth data collection should be continued.

Field data is normally collected as the probes are lowered through the water column. As a further check on field data, and to further enhance confidence in the data, it may be useful to repeat the field data collection of pH, dissolved oxygen and redox as the probes are brought back up to the surface. This is a particularly useful check on slow responding probes as they age or foul.

As noted by Nordin (2017), a water budget for Enos Lake is needed, as it would be useful over the longer term in the support of watershed management planning. PGL (2016) reported that 12 ha of the watershed area of 235 ha had been developed. Further updates on the area's development within the watershed are needed, including data on impervious surfaces. It may also be time to begin basic periodic sampling of the main inflows into Enos Lake to assess turbidity and total suspended solids, particularly following prolonged dry periods and during storm events. Simply limiting turbidity and total suspended solids in surface inputs to the lake is an important fundamental step in protecting Enos Lake water quality.

A more thorough data review should be done every 5 years, to examine trends, review the monitoring program, and provide a feedback loop to watershed management. This should be done in 2022, following completion of the more detailed portion of the water quality sampling program, which should also include a QA/QC program including duplicate samples and field blanks.

5.0 Acknowledgements

This document has been prepared as a contract for the BC Conservation Foundation. The conclusions, opinions and any other information in this report represent the author's best professional judgement based on the information available at the time of its completion.

6.0 References

PGL Environmental Consultants. 2016. *Enos Lake Protection and Monitoring Program. Prepared for FW Enterprises Ltd. c/o Seacliff Properties.* PGL file 4675-01.01 30 p + figures and appendix.

Deniseger, J., 2020. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data*. 14 p.

Deniseger, J., 2019. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data.* 13 p.

Deniseger, J., 2018. *Enos Lake Protection and Monitoring Program: Review of 2018 Water Quality Data.* 10 p.

Nordin, R., 2017. *Enos Lake Protection and Monitoring Program: Review of 2017 Water Quality Data*. 23 p.

Appendix 3

2022 Sampling Plan (PGL 2016)

Enos Lake Protection and Monitoring Program
FW Enterprises Ltd.
PGL File: 4675-01.01

Parameter (units)		Water Quality Target	Future Monitoring ^a						
Field Parameters (profiles at 1m increments)	Secchi Depth (m)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually						
	Dissolved Oxygen (mg/L and % saturation)	 ≥5 mg/L epilimnion ≥2 mg/L hypolimnion 	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually						
	Conductivity (µS/cm)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually						
	Temperature (°C)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually						
	рН	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually						
	Redox (mV)	None – supporting context only	Quarterly sampling ^b at site SWMP-03, starting in 2017 and repeated annually						
Laboratory Parameters	<i>E. coli</i> (# per mL)	BC Water Quality Guidelines (recreation – secondary contact) ^c	August 2017: 5 times in 30 days. Surface sample from SWMP-03 and any two shoreline locations. Repeat on 5 year increment.						
	PAHs (µg/mg)	BC Water Quality Guidelines (freshwater sediments)	August 2017: surface sediment from three locations: SWMP-06, SWMP-04 and SWMP-03.						
	Metals (various)	BC Water Quality Guidelines (total metals, freshwater aquatic life). Both average and short-term maximum guidelines apply, where applicable.	February 2017 and August 2017: five samples in a 30 day period. Each sample to occur at three depths from SWMP-03. Sampling to be repeated on five year increments.						
	Chlorophyll <i>a</i> (µg/L)	Avoid any increase	Quarterly sampling at site SWMP-03, starting in 2017, and repeated annually. Samples to be taken from three depths (surface, mid, deep water)						
	Hardness (as CaCO ₃)	None – required to interpret metals data	February 2017 and August 2017: five samples in a 30 day period. Each sample to occur at three depths from SWMP-03. Sampling to be repeated on five year increments. Data required to interpret metals concentrations.						
	Phosphorous (mg/L)	12 μg/L	Quarterly sampling at site SWMP-03, starting in 2017. Samples to be taken from three depths (surface, mid, deep water)						

Table 3-1. Summary of Water Quality Monitoring Program for Enos Lake

^aFuture monitoring is limited to the scope being taken on by the Developer and will continue until at least one year post build-out within the Enos Lake watershed. It is anticipated that some form of longer term monitoring will be undertaken by RDN in support of long term operation of stormwater infrastructure. ^bQuarterly sampling is defined as February, May, August, and November. ^cIt is assumed that swimming will not be a recreational use of Enos Lake. If that assumption is incorrect, primary contact guidelines should apply.

2022													
Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	
Dissolved Oxygen		F			F			F			F		
Temperature		F			F			F			F		
Redox potential		F			F			F			F		
pН		F			F			F			F		
Secchi Depth		F			F			F			F		
Chlorophyl a		L			L			L			L		
Phosphorhus		L			L			L			L		
E Coli								E					
Metals		М						М					
Hardness		М						М					
PAH								Р					
L = Water sample from three depths at SWMP-03 F = 1m in situ profiles from SWMP-03 Legend E = Five samples in 30 days, from SWMP-03 and any two shoreline locations. M = Five samples in 30 days, from SWMP-03 P = Surface sediment from SWMP-03, SWMP-06 and SWMP-04													

From ELPMP (PGL 2016)