

REGIONAL DISTRICT OF NANAIMO Water Service Area Annual Report 2022

Surfside Water Service Area

June 2023

REGIONAL DISTRICT OF NANAIMO

Water Services Department

6300 Hammond Bay Rd, Nanaimo, BC Canada V9T 6N2 | Ph 250-390-6560

Table of Contents

Ι.	Introduction	1
2.	Surfside Water Service Area	
	Groundwater Wells Reservoirs	
	2.3 Distribution System	
		_
3.	Water Sampling and Testing Program	2
4.	Water Quality - Source Water and Distribution System	2
5.	Water Quality Inquiries and Complaints	2
6.	Groundwater Production	3
7.	Maintenance Program	4
8.	Operator Certification	4
_		_
9.	Water Service Area Projects	
	9.2 2023 Proposed Projects & Upgrades	
10.	Emergency Response & Contingency Plan	5
11.	Supply Security	5
12.	Cross Connection Control	6
13.	CyberSecurity	6
14.	Closing	6

Appendix A - Map of Surfside Water Service Area

Appendix B - Water Quality Testing Results

Appendix C - Emergency Response & Contingency Plan

1. Introduction

The following annual report describes the Surfside Water Service Area and summarizes the water quality and production data from 2022. This report also includes a summary of inquiries and complaints, completed and proposed maintenance activities, Operator Certification, the Emergency Response & Contingency Plan, and the Cross Connection Control Program. This report is to be submitted to Island Health by the spring of 2023.

2. Surfside Water Service Area

The Surfside Water Service Area was established in 1986 and comprises an area northwest of Qualicum Beach on Surfside Drive and part of McFeely Drive. There are 39 water service connections in the Surfside Water Service Area. The water source comes from two groundwater wells located nearby. The water source is chlorinated and pumped into the system on-demand via two pressure tanks. A back-up generator is present at the pumphouse, should it be required. A map of the Surfside Water Service Area is provided in Appendix A for reference.

2.1 Groundwater Wells

Two groundwater production wells are present in the well field at 3547 West Island Highway, north of Qualicum Beach, B.C.

Well / Name	Well Depth	Wellhead Protection In Place	Treated/Untreate d with Chlorine		
#1	9.4 m	Yes	Treated		
#2	9.8 m	Yes	Treated		

2.2 Reservoirs

There is no water storage reservoir in the Surfside Water Service Area. Water supply is pumped into the system via a dual pressure tank arrangement.

2.3 <u>Distribution System</u>

The water distribution system in Surfside is summarized in the table below. Flushouts are present, but there are no fire hydrants on the system.

Watermain Material	Length of mains in Surfside Water Service Area	Prevalence in Water Service Area
AC: 150mm or smaller	0.8 km	72.5%
AC: 200mm or larger	none	n/a
PVC: 150mm or smaller	0.006 km	0.5%
PVC: 200mm or larger	0.3 km	27%

Note: 'AC' is Asbestos-Concrete, 'PVC' is poly-vinylchloride (plastic)

3. Water Sampling and Testing Program

Water sampling and testing is carried out weekly in the distribution system. Notably, an inline chlorine analyzer was installed in 2020 that monitors chlorine residual in the drinking water constantly, and will send alarm to RDN Operators when chlorine level drops below the operating level. Chlorine residual levels are maintained in order to ensure the absence of bacterial regrowth in the watermains. The following table includes a summary of all testing:

Timing	Location	Tests						
Weekly	RDN (in-house) Laboratory	Total coliforms, E.Coli Temperature, pH, Conductivity Free chlorine residual, Salinity, TDS						
Weekly (or as required)	BC Centre for Disease Control	Total coliforms, E.Coli						
Monthly/Quarterly (well water only)	Bureau Veritas	Monthly- Chloride Quarterly- Chloride, Sodium, Conductivity, TDS						
Annual Source Water Testing (every Fall)	Bureau Veritas	Complete potability testing of raw well water, including T-Ammonia						
Annual System Water Testing (every Spring)	Bureau Veritas	Complete potability testing of distribution system , including T-Ammonia						

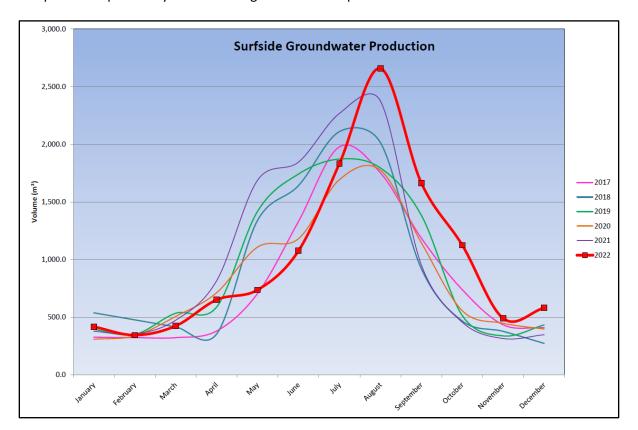
4. Water Quality - Source Water and Distribution System

Up-to-date water quality reports and lab data are posted monthly on the RDN website at www.rdn.bc.ca/surfside. Tables of water quality testing results for both the source water and distribution system are provided at the end of this report under Appendix B.

5. Water Quality Inquiries and Complaints

Very few complaints and inquiries were received from the Surfside water service area, and were typically related to high water bill inquiries.

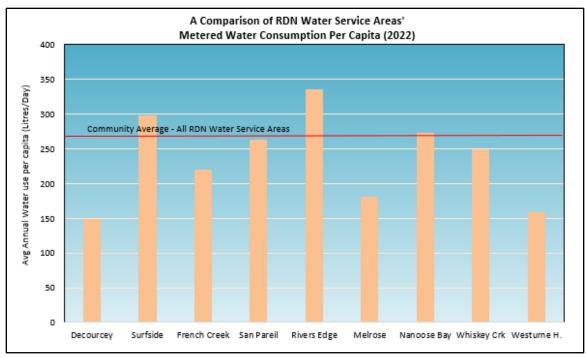
Surfside Pumphouse



A summary of the water system incidents in 2022 is given in the table below.

Activity in 2022	Date(s)	History/Notes
Boil Water Advisories	None	None
High Turbidity Events	None	None
Equipment Malfunction	None	None
Water Main Breaks	None	None
Pump Failures	None	None

6. Groundwater Production


Monthly groundwater production in the Surfside Water Service Area for the past 6 years is shown in the chart below. Groundwater production in 2022 was above average in the fall in comparison to previous years due to high seasonal temperatures.

Consumption

In the Fall/Winter of 2022, the average usage per home in Surfside was 0.39 cubic metres per day (85.8 imperial gallons). In the summer, the average water usage was 1.36 cubic metres per day (299 imperial gallons). Based on these figures, the annual consumption per capita is estimated to be 298 L/day (based on 2.4 people/household). This consumption is 11% more than all the other RDN system averages of 269 L/day/capita in 2022.

7. Maintenance Program

A weekly pump station inspection is carried out to reduce or eliminate the risk of contamination and system failure, and to ensure the consistent application of chlorine for treatment purposes. Watermains are flushed once annually in the spring. There are no fire hydrants in this water service area due to insufficient supply and capacity for fire flows. Twenty-four hour on-call coverage is in place to respond to water system emergencies and alarms.

8. Operator Certification

The Regional District Water & Utility Services staff is comprised of one Manager, one Project Engineer, one Engineering Technologist, one Chief Operator, one Engineering Technician, and seven certified operators. The operators receive ongoing training and certification in:

- ✓ Water Treatment
- ✓ Water Distribution
- ✓ Wastewater Collection
- ✓ Cross Connection Control
- Asbestos Awareness
- ✓ Chlorine Handling
- WHMIS (Workplace Hazardous Material Information System)
- ✓ TDG (Transportation of Dangerous Goods)
- Confined Space Awareness
- ✓ Fall Protection
- First Aid
- Silica Awareness

9. Water Service Area Projects

9.1 2022 Completed Studies & Projects

- Corresponded with residents regarding water conservation;
- Utilized leak detection equipment and tracking;
- Set new water rates structure based on rewarding conservation;

- Followed Cross Connection Control program to reduce backflow prevention risks;
- Enforced outdoor sprinkling regulations;
- Advised residents regarding water leak repairs;
- Continued the 2021-2030 Water Conservation Plan;
- Completed regular watermain flushing and hydrant maintenance;
- Maintained a high level of water quality;
- Continued quality control through regular testing and monitoring of water system;
- Continued valve maintenance program.

9.2 2023 Proposed Projects & Upgrades

- Upgrade well pumps to improve efficiency;
- Complete irrigation checks for high-water users;
- Begin billing for metered consumption based on revised water rates;
- Continue watermain flushing program;
- Continue leak detection equipment utilization program;
- Investigate new watermain flushing and metering procedures to promote conservation;
- Continue valve maintenance program;
- Implement Phase 2 Water Systems SCADA Master Plan;
- Continue the 2021-2030 DWWP Water Conservation Plan; and
- Continue to offer numerous water-saving incentives via rebates.

Waterfront access from Surfside Drive

10. Emergency Response & Contingency Plan

The Regional District Emergency Response & Contingency Plan (ERCP) contains procedures and contact information to efficiently respond to water system emergencies such as contamination of water supply, loss of supply, pump failure, and drought management. The ERCP was reviewed and updated in 2022, and copies are available on our website, at each RDN office, in each pump house, and in each Water Services vehicle. A copy of the ERCP is also attached to this report in Appendix C.

11. Supply Security

The RDN continues to effectively manage water supply in its service areas in response to ongoing demand and the effects of climate change. Most RDN water service areas are not expected to expand, so growth in demand is not expected. Initiatives that provide resiliency for the groundwater sources that serve residents remain a high priority. Reservoir capacity and redundancy are reviewed with regards to water storage during periods of drought, and water from backup sources is available to be delivered in the case of an emergency. Groundwater quality is regularly tested in all RDN water service areas. The aquifers within the regional district are monitored through the RDN's Drinking Water and Watershed Protection (DWWP) program. The most sustainable way to protect water supply is through demand management (conservation), which is promoted through outreach and stewardship initiatives provided by the RDN's Team WaterSmart, as well as the RDN Water Service Area's Water Conservation Plan 2020-2030.

Rebates for well water testing, water smart landscaping, and rainwater harvesting further assist RDN residents to reduce water usage in high demand seasons. A new tiered system for water rates taking effect in 2023 will help promote conservation by rewarding low water users with reduced rates and encouraging high water users to seek ways to use less. Additional planning and preparation initiatives will be introduced in the future to support water supply security.

12. Cross Connection Control

The RDN's Cross Connection Control Program was put in place to protect the public health by reducing the risk of contaminants flowing back into the public water supply. The RDN Manager of Water Services is the designated Cross Connection Control Manager.

The RDN's Cross Connection Control Program addresses cross connection threats through operating policies and procedures, as well as assisting customers with backflow preventer selection, installation, testing, maintenance and reporting. The program receives its authority from RDN Cross Connection Control Regulation Bylaw No. 1788, and the British Columbia Building Code, Part 7, which requires that potable water be protected from contamination. Additionally, a webpage has been established at https://rdn.bc.ca/cross-connection-control-program to educate RDN water service customers about cross connection hazards, and lists the relevant links to current standards and resources.

Two of the RDN's water system operators received certification as backflow assembly testers through the British Columbia Water & Waste Association (BCWWA).

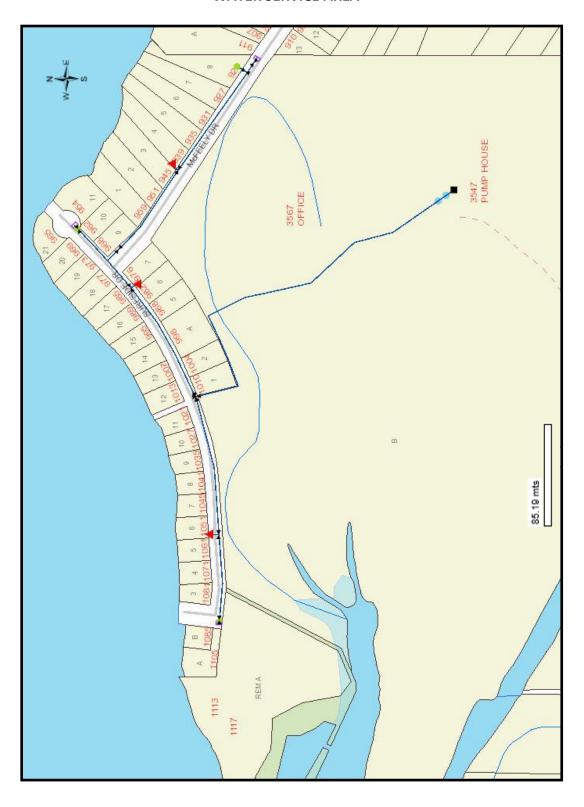
13. Cyber Security

The RDN uses a multi-level approach to cyber-security. Corporate network security is employed via a universal threat management gateway that implements various methods of data security, which includes daily definition updates to block known cyber threats. In addition, all RDN PC's are protected with anti-virus software. RDN water systems are connected to the corporate network via IP-Sec VPN's for remote management by information technology and equipment operators. Future infrastructure upgrades will see our water systems located on segregated networks to limit the vulnerability from cybersecurity threats.

14. Closing

An annual report for the year 2023 will be prepared and submitted to Island Health in the spring of 2024. Annual reports are also available on our website at: www.rdn.bc.ca/surfside.

Surfside Well #2


APPENDIX A

MAP OF SURFSIDE

WATER SERVICE AREA

SURFSIDE WATER SERVICE AREA

APPENDIX B

WATER QUALITY TESTING RESULTS

SURFSIDE WATER SERVICE AREA

Facility Location: 3547 Island Highway West, Qualicum Beach

Facility Information: Facility Type: 15-300 (DWC)

Facility Sampling History:

Date Collected	Total Coliform	Total E. Coli	Site Name
01/05/2022	QRWRT	QRWRT	1105 Surfside
01/26/2022	LT1	LT1	1105 Surfside
02/02/2022	LT1	LT1	1105 Surfside
03/02/2022	LT1	LT1	1105 Surfside
04/05/2022	LT1	LT1	1105 Surfside
05/04/2022	LT1	LT1	1105 Surfside
06/27/2022	LT1	LT1	1105 Surfside
07/06/2022	LT1	LT1	1105 Surfside
08/02/2022	LT1	LT1	1105 Surfside
09/07/2022	LT1	LT1	1105 Surfside
10/05/2022	LT1	LT1	1105 Surfside
11/02/2022	LT1	LT1	1105 Surfside
12/05/2022	LT1	LT1	1105 Surfside
01/17/2022	LT1	LT1	923 McFeely
02/08/2022	LT1	LT1	923 McFeely
03/08/2022	LT1	LT1	923 McFeely
04/13/2022	LT1	LT1	923 McFeely
06/08/2022	LT1	LT1	923 McFeely
06/27/2022	LT1	LT1	923 McFeely
07/13/2022	LT1	LT1	923 McFeely
08/09/2022	LT1	LT1	923 McFeely
09/14/2022	LT1	LT1	923 McFeely
10/12/2022	LT1	LT1	923 McFeely
11/07/2022	LT1	LT1	923 McFeely
12/21/2022	REJCT DELAY3	REJCT DELAY3	923 McFeely
02/16/2022	LT1	LT1	962 Surfside
03/16/2022	LT1	LT1	962 Surfside
04/20/2022	LT1	LT1	962 Surfside
06/15/2022	LT1	LT1	962 Surfside
07/19/2022	LT1	LT1	962 Surfside

08/16/2022	LT1	LT1	962 Surfside
09/21/2022	LT1	LT1	962 Surfside
10/17/2022	LT1	LT1	962 Surfside
11/14/2022	LT1	LT1	962 Surfside
12/14/2022	LT1	LT1	962 Surfside

Interpreting Sample Reports

In VIHA, the results of drinking water sampling are reported using the following coding system:

- LT1 Less than 1 (no detectable bacteria) Meaning: No bacteria present
- L1 Less than 1 (no detectable bacteria) Meaning: No bacteria present

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control		RDN In-House Laboratory and Spectrophotometer								
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
5-Dec-22	1105 Surfside	0	0	0	0	8	7.09	0.30	110.7	0.11	233.0	Fe and Mn are no longer tested in-house.	
14-Dec-22	962 Surfside	0	0	0	0	8	7.05	0.49	86.3	0.09		See Annua	l Tap Water
21-Dec-22	923 McFeely	0	0	0	0	7	7.00	0.20	82.3	0.08	4=0.0	Results at https://www	v.rdn.bc.ca/sur
												fside	
CDN Drinking Water Guidelines		<1	<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from <a href="https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#_ftn1

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control		RDN In-House Laboratory and Spectrophotometer								
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
3-Nov-22	1105 Surfside	0	0	0	0	13	7.48	0.24	104.4	0.10	219.3	Fe and Mn are no longer tested in-house.	
8-Nov-22	923 McFeely	0	0	0	0	12	6.89	0.26	77.7	0.08		See Annua	l Tap Water
14-Nov-22	962 Surfside	0	0	0	0	12	6.85	0.43	85.9	0.09	4044	Results at https://www	v.rdn.bc.ca/sur
21-Nov-22	1105 Sufside			0	0	10	6.88	0.22	89.6	0.09		fside	
28-Nov-22	923 McFeely			0	0	10	6.85	0.31	78.9	0.08	166.7		
CDN Drinking Water Guidelines		<1	<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	рН (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control		RDN In-House Laboratory and Spectrophotometer								
Date	Sample Location (Address)	E. coli	Total Coliform	E.coli *	Total Coliform	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
5-Oct-22	1105 Surfside	0	0	0	0	16	6.82	0.30	97.3	0.10	204.3	Fe and Mn are no longer tested in-house.	
12-Oct-22	923 McFeely	0	0	0	0	16	6.77	0.44	98.6	0.10		See Annua	l Tap Water
17-Oct-22	962 Surfside	0	0	0	0	15	6.65	0.48	93.9	0.09	40= 4	Results at https://www	/.rdn.bc.ca/sur
24-Oct-22	1105 Surfside			0	0	15	6.74	0.39	93.6	0.09		fside	
CDN Drinking Water Guidelines		<1	<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control		RDN In-House Laboratory and Spectrophotometer								
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
7-Sep-22	1105 Surfside	0	0	0	0	17	6.89	0.38	96.3	0.10	202.5	Fe and Mn tested in-ho	are no longer
14-Sep-22	923 McFeely	0	0	0	0	18	7.04	0.35	105.9	0.10		See Annua	l Tap Water
21-Sep-22	962 Surfside	0	0	0	0	16	7.20	0.59	106.1	0.11	0000	Results at https://www	v.rdn.bc.ca/sur
27-Sep-22	1105 Surfsie			0	0		6.77	0.44	99.2	0.10		fside	
CDN Drinkin	CDN Drinking Water Guidelines <1 <1				<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control		RDN In-House Laboratory and Spectrophotometer										
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform *	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)		
2-Aug-22	1105 Surfside	0	0	0	0	n/a	7.33	0.50	75.5	0.07	159.3	Fe and Mn tested in-ho	are no longer		
9-Aug-22	923 McFeely	0	0	0	0	19	6.72	0.48	76.8	0.08		See Annua	l Tap Water		
16-Aug-22	962 Surfside	0	0	0	0	18	7.18	0.42	89.5	0.09	400.0	Results at https://www	v.rdn.bc.ca/sur		
22-Aug-22	1105 Surfside			0	0	17	6.59	0.51	88.3	0.09		fside			
31-Aug-22	923 McFeely			0	0	20	7.50	0.41	91.6	0.09	193.6				
CDN Drinkin	CDN Drinking Water Guidelines		<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC		

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html# ftn1

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

		_	ntre for Control		RDN In-House Laboratory and Spectrophotometer										
Date	Sample Location (Address)	E. coli	Total Coliform *	E.coli *	Total Coliform *	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)		
6-Jul-22	1105 Surfside	0	0	0	0	17	7.65	0.44	67.7	0.07	143.4	Fe and Mn tested in-ho	are no longer		
13-Jul-22	923 McFeely	0	0	0	0	18	6.79	0.33	69.2	0.07	146.9	See Annua	l Tap Water		
20-Jul-22	962 Surfside	0	0	0	0	18	6.77	0.30	70.7	0.07	147.7	Results at https://www	/.rdn.bc.ca/sur		
26-Jul-22	1105 Surfside			0	0	17	7.02	0.41	72.5	0.07	153.2	fside			
CDN Drinkin	ng Water Guidelines	<1	<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC		

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	рН (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control		RDN In-House Laboratory and Spectrophotometer								
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform *	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
1-Jun-22	1105 Surfside			0	0	12	7.03	0.44	68.9	0.07	145.6	Fe and Mn tested in-ho	are no longer
8-Jun-22	923 McFeely	0	0	0	0	15	6.87	0.30	67.9	0.07		See Annua	Tap Water
15-Jun-22	962 Surfside	0	0	0	0	14	7.00	0.28	68.0	0.07	4 4 4 4 4 4 4	Results at https://www	v.rdn.bc.ca/sur
27-Jun-22	1105 Surfside	0	0	0	0	16	8.09	0.36	65.0	0.07		fside	
CDN Drinkin	CDN Drinking Water Guidelines		<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control			F	RDN In-H	DN In-House Laboratory and Spectrophotometer							
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform *	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)		
4-May-22	1105 Surfside	0	0	0	0	10	6.91	0.39	75.0	0.07	158.2	Fe and Mn tested in-ho	are no longer		
9-May-22	923 McFeely	0	0	0	0	10	6.83	0.26	69.4	0.07	146.6	See Annua	Tap Water		
16-May-22	962 Surfside	0	0	0	0	11	6.80	0.44	69.7	0.07	143.3	Results at https://www	rdn.bc.ca/sur		
25-May-22	1105 Sufside			0	0	12	6.75	0.39	70.5	0.07	148.8	fside			
CDN Drinkin	g Water Guidelines	<1	<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC		

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control		RDN In-House Laboratory and Spectrophotometer								
Date	Sample Location (Address)	E. coli *	Total Coliform *	E.coli *	Total Coliform *	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
5-Apr-22	1105 Surfside	0	0	0	0	9	7.15	0.27	84.1	0.08	177.1	Fe and Mn tested in-ho	are no longer
13-Apr-22	923 McFeely	0	0	0	0	9	6.78	0.38	71.3	0.07	10010	See Annua	Tap Water
20-Apr-22	962 Surfside	0	0	0	0	8	6.85	0.38	69.9	0.07	147.5	Results at https://www	rdn.bc.ca/sur
25-Apr-22	1105 Surfside			0	0	8	6.83	0.38	85.2	0.08	186.0	fside	
CDN Drinkin	CDN Drinking Water Guidelines		<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-guidelines-canadian-drinking-water-quality-summary-table.html#">https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality-guidelines-canadian-drinking-water-quality

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control			F	RDN In-H	ouse Labor	atory and S	pectroph	otometer		
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform *	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
2-Mar-22	1105 Surfside	0	0	0	0	6	6.90	0.36	79.8	0.08	168.3	Fe and Mn tested in-ho	are no longer
8-Mar-22	923 McFeely	0	0	0	0	7	7.25	0.40	80.8	0.08	170.8	See Annua	Tap Water
16-Mar-22	962 Surfside	0	0	0	0	7	6.91	0.32	83.8	0.08	176.5	Results at https://www	v.rdn.bc.ca/
23-Mar-22	1105 Surfside			0	0	8	7.11	0.35	82.0	0.08		surfside	
29-Mar-22	923 McFeely			0	0	9	7.49	0.35	70.6	0.07	149.3		
CDN Drinkin	ng Water Guidelines	<1	<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from <a href="https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#_ftn1_

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	рН (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control				RDN In-H	ouse Labor	atory and S	pectroph	otometer		
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
2-Feb-22	1105 Surfside	0	0	0	0	6	7.09	0.27	77	0.08	161.9	Fe and Mn tested in-ho	are no longer ouse.
8-Feb-22	923 McFeely	0	0	0	0	6	6.91	0.31	68.9	0.07	145.1		l Tap Water
16-Feb-22	962 Surfside	0	0	0	0	6	7.00	0.41	74.9	0.08	159.6	Results at https://www	rdn.bc.ca/
23-Feb-22	1105 Surfside			0	0	7	6.95	0.41	82.4	0.08	173.5	surfside	
CDN Drinkir	CDN Drinking Water Guidelines		<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html# ftn1

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	рН (2015)	None	7.0-10.5	Not applicable	I Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside Water Analysis - 2022 Monthly Report

			ntre for Control				RDN In-H	ouse Labor	atory and S	pectroph	otometer		
Date	Sample Location (Address)	E. coli *	Total Coliform	E.coli *	Total Coliform	Temp. (°C)	рН	Free Chlorine Residual (mg/L)	Total Dissolved Solids (mg/L)	Salinity (%)	Conductivity (µS/cm)	Total Iron (mg/L)	Manganese (mg/L)
5-Jan-22	1105 Surfside	0	0	0	0	6	7.41	0.26	74.2	0.07	1 1565	Fe and Mn tested in-ho	are no longer
12-Jan-22	923 McFeely			0	0	5	6.95	0.30	66.2	0.07	140.3	See Annual	
17-Jan-22	923 McFeely	0	0	0	0	5	6.91	0.39	68.2	0.07	4440	Results at https://www	r.rdn.bc.ca/
26-Jan-22	1105 Surfside	0	0	0	0	7	7.08	0.16	76.0	0.08		surfside	
CDN Drinkir	ng Water Guidelines	<1	<1	<1	<1	n/a	7.0-10.5	n/a	500	n/a	n/a	0.3	0.02 AO 0.12 MAC

Legend:

Green font indicates a value flagged for operational consideration

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Comments:

A full potability scan, including metals and minerals, is completed once per year at an external lab.

Notes below about pH (2015) from https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html# ftn1

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	рН (2015)	None	7.0-10.5	Not applicable	I Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

^{*} Coliforms are measured in colony forming units (CFU) per 100 millilitres of water (CFU/100mL)

Surfside #1 Raw Well Water Analysis 3547 Island Highway

CDWG=Canadian Drinking Water Guidelines OG= Operational Guidance Value

MAC=Maximum Acceptable Concentration

AO= Asthetic Objective

Green font indicates a value flagged for operational considerations.

Orange font indicates non-compliance with the Aesthetic Objective in the Canadian Drinking Water Guidelines (CDWG)

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Ttou I	Unit mulcates in	on-compilan	oc with the n	luximum Acc	cptubic con	centration (W	iAo, in the o		
	Units	CDWG		Sept 18	October 25	October 3	October 21	October 21	October 13
	Offics	ODWO		2017	2018	2019	2020	2021	2022
Miscellaneous Inorgani	cs								
Fluoride	mg/L	1.5	MAC	0.026	0.023	< 0.05	<0.05	<0.05	< 0.05
Alkalinity (total as CaCO ₃)	mg/L	1.0	IVII/ (O	55.3	53.4	53	50	57	50
Anions	mg/L			00.0	00.4	00	00	01	00
Dissolved Sulphate	mg/L	500	AO	6.2	4.8	4.1	4.4	5.1	4.8
Dissolved Chloride		250	AO	14	11	22	9	14	13
	mg/L	1					_		
Nitrite	mg/L	I	MAC	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005
Miscellaneous				_	_	_	_	_	_
Apparent Colour	Colour Unit			5	5	<5	5	<5	<5
Nutrients									
Total Ammonia	mg/L			<0.020	<0.020	0.045	<0.015	<0.015	<0.015
Physical Properties									
Conductivity	μS/cm			170	149	190	140	160	170
pH	pН	7.0:10.5	OG	7.56	7.75	6.95	7.03	7.01	7.12
TDS	mg/L	500	AO	120	94	130	100	110	100
Turbidity	NTU			0.23	<0.10	<0.1	0.13	<0.1	0.1
Microbiological Parame	eters								
E.coli	MPN/100mL	<1	MAC	<1.0	<1.0	0	0	0	0
Total Coliforms	MPN/100mL	<1	MAC	17	<1.0	0	0	0	0
Calculated Parameters									
Total Hardness (CaCO ₃)	mg/L			64.6	60.6	77.4	57.8	62.4	63.2
Nitrate	mg/L	10	MAC	0.519	0.525	0.609	0.597	0.482	0.479
Elements	J.								
Total Mercury	mg/L	0.001	MAC	<0.00001	0.0000053	<0.000002	<0.0000019	<0.000019	<0.0000019
Total Metals	mg/L	0.001	Wir (O	10.00001	0.0000000	10.000002	10.0000013	10.0000010	40.0000010
Total Aluminum	m a /l	0.1	OG	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	0.003
Total Antimony	mg/L mg/L	0.006	MAC	<0.005	<0.003	<0.005	<0.005	<0.003	<0.005
Total Arsenic	mg/L	0.000	MAC	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Total Barium		1	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Beryllium	mg/L mg/L		IVIAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Bismuth	mg/L			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Boron		5	MAC	<0.050	<0.050	<0.05	<0.05	<0.05	<0.05
Total Cadmium	mg/L mg/L	0.005	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Chromium	mg/L	0.005	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Cobalt	mg/L	0.03	IVIAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Copper	mg/L	1	AO	0.00235	0.00339	0.00301	0.00366	0.00272	0.00293
Total Iron	mg/L	0.3	AO	0.00233	0.00555	0.0054	<0.005	<0.005	<0.005
Total Lead	mg/L	0.01	MAC	<0.0002	0.0007	0.00041	0.00048	0.00021	<0.0002
Total Lead		0.02	AO						
Total Manganese	mg/L	0.02	MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Molybdenum	mg/L	0.12	IVII/ CO	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Nickel	mg/L			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Selenium	mg/L	0.05	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Silicon	mg/L	0.00	1417 (3	7.54	7.37	7.76	7.76	7.69	7.89
Total Silver	mg/L			<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Total Strontium	mg/L			0.0463	0.0429	0.0536	0.0406	0.0426	0.0445
Total Thallium	mg/L			<0.00001	<0.00001	<0.00001	<0.00001	<0.0001	<0.00001
Total Tin	mg/L			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total Titanium	mg/L			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total Uranium	mg/L	0.02	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Vanadium	mg/L			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total Zinc	mg/L	5	AO	<0.005	<0.005	0.0062	0.0089	0.0085	<0.005
Total Zirconium	mg/L			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Calcium	mg/L			19.4	18.4	23.6	17	18.9	19.1
Total Magnesium	mg/L			3.92	3.56	4.5	3.5	3.7	3.77
Total Potassium	mg/L			0.403	0.349	0.389	0.35	0.366	0.368
Total Sodium	mg/L	200	AO	6.25	5.21	6.64	5.29	5.49	5.66
Total Sulphur	mg/L		, , ,	<3.0	<3.0	<3.0	<3	<3	<3
Notes below about pH (2015) from		/	/h.a.a.a/mainmatiana						

Notes below about pH (2015) from https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_quide-res_recom/summary-table-EN-2020-02-11.pdf

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

Surfside #2 Raw Well Water Analysis 3547 Island Highway resampled Metals only

CDWG=Canadian Drinking Water Guidelines OG= Operational Guidance Value MAC=Maximum Acceptable Concentration

AO= Asthetic Objective

Green font indicates a value flagged for operational considerations.

Orange font indicates non-compliance with the Aesthetic Objective in the Canadian Drinking Water Guidelines (CDWG)
Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

Red fe	ont indicates n	on-complian	ce with the N	laximum Acc	eptable Con	centration (N	IAC) in the C	DWG	,
	Units	CDWG		Sept 18 2017	October 25 2018	October 3 2019	October 21 2020	October 21 2021	October 13 2022
Miscellaneous Inorgani	cs								
Fluoride	mg/L	1.5	MAC	0.023	0.02	<0.05	<0.05	<0.05	<0.05
Alkalinity (total as CaCO ₃)	mg/L			56.6	49.6	49	48	53	51
Anions									
Dissolved Sulphate	mg/L	500	AO	9.8	5.8	6.4	5.3	5	7.7
Dissolved Chloride	mg/L	250	AO	32	11	47	9.9	16	31
Nitrite	mg/L	1	MAC	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005
Miscellaneous									
Apparent Colour	Colour Unit			5	<5.0	<5.0	5	<5	<5
Nutrients									
Total Ammonia	mg/L			<0.020	<0.020	0.058	< 0.015	< 0.015	<0.015
Physical Properties									
Conductivity	μS/cm			243	142	270	150	160	240
pH	pH	7.0:10.5	OG	7.51	7.51	7.38	6.99	7.07	7.08
TDS	mg/L	500	AO	170	74	160	100	140	170
Turbidity	NTU			<0.10	0.1	<0.1	0.17	<0.1	0.12
Microbiological Parame	eters								
E.coli	MPN/100mL	<1	MAC	<1.0	<1.0	0	0	0	0
Total Coliforms	MPN/100mL	<1	MAC	<1.0	<1.0	0	0	0	0
Calculated Parameters									
Total Hardness (CaCO ₃)	mg/L			85.2	55.4	96.8	54.8	39.5	83.6
Nitrate	mg/L	10	MAC	0.463	0.498	0.542	0.525	0.424	0.404
Elements	9/ =			0.770		010 12	0.020	VI	
Total Mercury	mg/L	0.001	MAC	<0.00001	0.0000044	<0.000002	<0.0000019	< 0.0000019	< 0.0000019
Total Metals	g/ =	0.001		0.0000	0.0000011	0.000002	0.0000010	0.0000010	0.0000010
Total Aluminum	mg/L	0.1	OG	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Total Antimony	mg/L	0.006	MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Total Arsenic	mg/L	0.01	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Barium	mg/L	1	MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Beryllium	mg/L			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Bismuth	mg/L			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Boron	mg/L	5	MAC	< 0.050	<0.050	<0.050	< 0.05	< 0.05	< 0.05
Total Cadmium	mg/L	0.005	MAC	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Total Chromium	mg/L	0.05	MAC	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Total Cobalt	mg/L			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Total Copper	mg/L	1	AO	0.00368	0.00277	0.00217	0.00204	0.00263	0.00311
Total Iron	mg/L	0.3	AO	0.0087	0.0154	0.0152	0.0097	0.0087	0.0085
Total Lead	mg/L	0.01	MAC	0.00104	0.00073	0.00047	0.00023	0.00025	0.00025
Total Manganese	mg/L	0.02 0.12	AO MAC	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Molybdenum	mg/L			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Nickel	mg/L			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Selenium	mg/L	0.05	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.001	<0.0001
Total Silicon	mg/L			7.81	7.03	7.66	7.26	7.29	8.3
Total Silver	mg/L			<0.00002	<0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Total Strontium	mg/L			0.0651	0.0409	0.0805	0.0413	0.0423	0.0645
Total Thallium	mg/L			<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Total Tin	mg/L			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total Titanium	mg/L			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total Uranium	mg/L	0.02	MAC	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Vanadium	mg/L			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total Zinc	mg/L	5	AO	0.0303	0.0107	0.0083	0.0052	0.0138	0.0081
Total Zirconium	mg/L			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Calcium	mg/L			26	16.8	29.7	16.5	18.2	25.1
Total Magnesium	mg/L			4.95	3.24	5.48	3.31	3.36	5.07
Total Potassium	mg/L	000	4.0	0.459	0.314	0.455	0.328	0.339	0.43
Total Sodium	mg/L	200	AO	12.1	6.41	13.6	7.06	7.12	10.5
Total Sulphur Notes below about pH (2015) from	mg/L	0.00/0004==+/	/ho oo/pri=usti	<3.0	<3.0	<3.0	<3	<3	<3
INDIES DEIDW ADOUL PH (2015) from	mups.//www.canad	a.ca/content/dam	mu-sc/migration	no-so/ewn-semt/	an ioiiilais/pai/bi	มมร/พลเยา-eau/St	ını gulde-res red	งงาน summarv-tab	10-EIN-ZUZU-UZ-

Notes below about pH (2015) from https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt-formats/pdf/pubs/water-eau/sum_guide-res_recom/summary-table-EN-2020-02-11.pdf

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable	Not applicable	The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.

Surfside Distribution (Tap Water) Analysis 1105 Surfside Drive

CDWG=Canadian Drinking Water Guidelines

MAC=Maximum Acceptable Concentration

OG= Operational Guidance Value

AO= Asthetic Objective.

Green font indicates a value flagged for operational consideration Orange font indicates non-compliance with the Aesthetic Objective in the Canadian Drinking Water Guidelines (CDWG)

Red font indicates non-compliance with the Maximum Acceptable Concentration (MAC) in the CDWG

										-,		
	Units	CDWG		May 13	May 19	May 10	May 8	May 7	May 13	May 20	May 6	May 5
	Office	CDWG		2014	2015	2016	2017	2018	2019	2020	2021	2022
Miscellaneous Inorgani	cs											
Fluoride	mg/L	1.5	MAC	<0.05	0.024	0.026	0.029	0.026	0.025	<0.05	< 0.05	<0.05
Alkalinity (total as CaCO ₃)	mg/L			54	53.7	61.4	66.7	51.8	57.2	51	54	55
Anions	g, _				55			0.110	\$1.IZ			
Dissolved Sulphate	mg/L	500	AO	4.1	5.19	5.38	5.11	5.7	4.5	4.1	7.2	4.6
Dissolved Chloride	mg/L	250	AO	9	10	8.6	13	11	10	11	8.8	11
Nitrite	mg/L	1	MAC	<0.05	<0.0050	<0.0050	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005
Miscellaneous	9, _			-								
Apparent Colour	Colour Unit			<5	<5	10	10	5	<2	5	10	<5
Nutrients	Oolodi Ollit			10	, o	10	10	Ü		Ü	10	40
Total Ammonia	ma/l			0.02	0.017	0.017	0.091	<0.020	<0.015	0.021	<0.015	<0.015
	mg/L			0.02	0.017	0.017	0.091	<0.020	<0.015	0.021	<0.013	<0.013
Physical Properties	0/			101	454	457	404	457	450	450	110	100
Conductivity	μS/cm	70405	^^	161	154	157	184	157	153	150 7.09	140	160
pH TDS	pH	7.0:10.5	AO AO	7 126	7.68 90	7.55	7.85	7.72	7.32	90	7.3	6.99
	mg/L NTU	500	AU			78	108	98	100		88	94
Turbidity				<0.5	<0.10	0.2	0.17	0.27	0.2	<0.1	<0.1	<0.1
Microbiological Parame		. 4	1440	1.0	:1.0	.1.0	:1.0	:1.0	0			
E.coli	MPN/100mL	<1	MAC	<1.0	<1.0	<1.0	<1.0	<1.0	0	0	0	0
Total Coliforms	MPN/100mL	<1	MAC	<1.0	<1.0	<1.0	<1.0	<1.0	0	0	0	0
Calculated Parameters												
Total Hardness (CaCO ₃)	mg/L			66	59.4	60	85.3	61	59.2	58.9	52.2	61.7
Nitrate	mg/L	10	MAC	0.71	0.533	0.555	0.529	0.637	0.633	0.85	0.773	0.713
Elements												
Total Mercury	mg/L	0.001	MAC	<0.00001	<0.00001	<0.00001	<0.00001	<0.000002	<0.000002	<0.0000019	<0.0000019	<0.000019
Total Metals												
Total Aluminum	mg/L	0.1	OG	<0.025	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003
Total Antimony	mg/L	0.006	MAC	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Total Arsenic	mg/L	0.01	MAC	<0.00025	<0.0001	<0.0001	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Barium	mg/L	1	MAC	0.00357	0.0011	0.0017	0.0035	0.0018	0.0018	0.0011	<0.001	0.0021
Total Beryllium	mg/L			<0.00025	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Total Bismuth	mg/L			<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Boron	mg/L	5	MAC	0.023	<0.050	<0.050	<0.050	<0.050	<0.05	<0.05	<0.05	<0.05
Total Cadmium	mg/L	0.005	MAC	<0.00005	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Total Chromium	mg/L	0.05	MAC	<0.0025	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001
Total Cobalt	mg/L			<0.0005	<0.0005	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Total Copper	mg/L	1	AO	0.0088	0.00594	0.00898	0.00451	0.00513	0.00789	0.00638	0.00692	0.00523
Total Iron	mg/L	0.3	AO	0.068	0.011	0.0288	0.0483	0.0137				0.0427
Total Lead					0.000=1		0.000		0.0296	0.0223	0.0194	
Total Manganese	mg/L	0.01	MAC	0.0019	0.00054	0.00101	0.0003	0.00034	0.00048	0.00044	0.00042	0.00034
Total Molybdenum	mg/L mg/L	0.02	AO	0.0019 <0.0050	0.00054 <0.001		0.0003 <0.001					
	mg/L					0.00101		0.00034	0.00048	0.00044	0.00042	0.00034
Total Nickel	mg/L	0.02	AO	<0.0050	<0.001	0.00101 <0.001	<0.001	0.00034 <0.001	0.00048	0.00044 0.0011	0.00042 <0.001	0.00034 <0.001
	mg/L	0.02	AO	<0.0050	<0.001 <0.001	0.00101 <0.001 <0.001	<0.001 <0.001	0.00034 <0.001 <0.001	0.00048 <0.001 <0.001	0.00044 0.0011 <0.001	0.00042 <0.001 <0.001	0.00034 <0.001 <0.001
Total Nickel	mg/L mg/L mg/L	0.02 0.12	AO MAC	<0.0050 <0.00025 <0.0010	<0.001 <0.001 <0.001	0.00101 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001	0.00034 <0.001 <0.001 <0.001	0.00048 <0.001 <0.001 <0.001	0.00044 0.0011 <0.001 <0.001	0.00042 <0.001 <0.001 <0.001	0.00034 <0.001 <0.001 <0.001
Total Nickel Total Selenium	mg/L mg/L mg/L mg/L	0.02 0.12	AO MAC	<0.0050 <0.00025 <0.0010 <0.0005	<0.001 <0.001 <0.001 <0.0001	0.00101 <0.001 <0.001 <0.001 <0.0001	<0.001 <0.001 <0.001 <0.0001	0.00034 <0.001 <0.001 <0.001 <0.0001	0.00048 <0.001 <0.001 <0.001 <0.0001	0.00044 0.0011 <0.001 <0.001 <0.0001	0.00042 <0.001 <0.001 <0.001 0.0001	0.00034 <0.001 <0.001 <0.001 <0.0001
Total Nickel Total Selenium Total Silicon	mg/L mg/L mg/L mg/L mg/L	0.02 0.12	AO MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18	<0.001 <0.001 <0.001 <0.0001 7.91	0.00101 <0.001 <0.001 <0.001 <0.0001 8.16	<0.001 <0.001 <0.001 <0.0001 10.4	0.00034 <0.001 <0.001 <0.001 <0.0001 7.87	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69	0.00042 <0.001 <0.001 <0.001 0.0001 7.19	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66
Total Nickel Total Selenium Total Silicon Total Silver	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12	AO MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002	0.00101 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.00005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002	0.00034 <0.001 <0.001 <0.001 <0.0001 7.87 <0.00002	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002	0.00044 0.0011 <0.001 <0.0001 <0.0001 7.69 <0.00002 0.0466 <0.00001	0.00042 <0.001 <0.001 <0.001 0.0001 7.19 <0.00002	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002
Total Nickel Total Selenium Total Silicon Total Silver Total Strontium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12	AO MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495	0.00101 <0.001 <0.001 <0.001 <0.0001 8.16 <0.00002 0.0551	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799	0.00034 <0.001 <0.001 <0.001 <0.0001 7.87 <0.00002 0.0549	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466	0.00042 <0.001 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542
Total Nickel Total Selenium Total Silicon Total Silver Total Strontium Total Thallium Total Tin Total Titanium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	AO MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.00005 <0.0005 <0.0005	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.005	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.0005 <0.005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.005	0.00034 <0.001 <0.001 <0.0001 <0.0001 7.87 <0.00002 0.0549 <0.00001 <0.005 <0.005	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.0001 <0.005 <0.005	0.00044 0.0011 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.00001 <0.005 <0.005	0.00042 <0.001 <0.001 0.0001 0.0001 7.19 <0.00002 0.0421 <0.00001	0.00034 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.0005 <0.005
Total Nickel Total Selenium Total Silicon Total Silver Total Strontium Total Thallium Total Tin Total Titanium Total Uranium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12	AO MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.00005 <0.0005 <0.0005 <0.0005	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.005 <0.005	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.00005 <0.005 <0.005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.005	0.00034 <0.001 <0.001 <0.001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.0005	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.00001 <0.005 <0.005 <0.005	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.00001 <0.005 <0.005	0.00042 <0.001 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.00001 <0.005 <0.005	0.00034 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.0001 <0.005 <0.005 <0.005
Total Nickel Total Selenium Total Silicon Total Siliver Total Strontium Total Thallium Total Tin Total Titanium Total Uranium Total Vanadium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	MAC MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.00005 <0.0005 <0.0025 <0.0005 <0.0005	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.00005 <0.0005 <0.0005 <0.0001 <0.0001	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.00005 <0.0005 <0.0005 <0.0005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.005 <0.0001	0.00034 <0.001 <0.001 <0.001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.005	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.00001 <0.005 <0.005 <0.005 <0.005	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.00001 <0.005 <0.005 <0.0001	0.00042 <0.001 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.00001 <0.005 <0.0005	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.0005 <0.005 <0.005 <0.005
Total Nickel Total Selenium Total Silicon Total Siliver Total Strontium Total Thallium Total Tin Total Titanium Total Uranium Total Vanadium Total Zinc	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	AO MAC MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.00005 <0.0005 <0.0005 <0.0005	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.005 <0.005 <0.005 <0.005	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.0005 <0.005 <0.005 <0.005 <0.005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.0005 <0.0001 <0.005	0.00034 <0.001 <0.001 <0.0001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.005 <0.005 <0.005	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.0005 <0.005 <0.005 <0.005 <0.005	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.0005 <0.005 <0.005 <0.005	0.00042 <0.001 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.0005 <0.005 <0.005 <0.005	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.00001 <0.005 <0.005 <0.005 <0.005 <0.005
Total Nickel Total Selenium Total Silicon Total Siliver Total Strontium Total Thallium Total Tin Total Titanium Total Uranium Total Vanadium Total Zinc Total Zirconium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	MAC MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.00005 <0.0005 <0.0025 <0.0005 0.0025	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.0005 <0.0005 <0.0005 <0.0005	0.00034 <0.001 <0.001 <0.001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005	0.00042 <0.001 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.0005 <0.005 <0.005 <0.005 <0.005	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Total Nickel Total Selenium Total Silicon Total Silicon Total Sirver Total Strontium Total Thallium Total Titanium Total Uranium Total Vanadium Total Zinc Total Zirconium Total Calcium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	MAC MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.0005 <0.0005 <0.0025 <0.0025 <0.0005 20.0029	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.005 <0.005 <0.005 <0.005 <18.9	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.0005 <0.005 <0.005 <0.005 <0.005 <1.005 <0.005 <0.005 <0.005 <1.005 <0.005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.0005 <0.0005 <0.0001 20.70001 29.7	0.00034 <0.001 <0.001 <0.0001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.005 <0.005 <0.0001 20	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.0005 <0.0005 <0.0005 <0.0001 <0.005 <0.0001 19.5	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.0005 <0.0005 <0.0005 <0.0001 18.5	0.00042 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.0005 <0.0005 <0.0001 <0.005 <0.0005 <0.0001 15.9	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.0005 <0.005 <0.005 <0.005 <0.0001 <0.005 <0.0001 <0.005
Total Nickel Total Selenium Total Silicon Total Silicon Total Sirver Total Strontium Total Thallium Total Titanium Total Uranium Total Vanadium Total Zinc Total Zirconium Total Calcium Total Calcium Total Magnesium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	MAC MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.0005 <0.0005 <0.0025 <0.0025 <0.0005 20.0005 20.0029	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <1.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.0005 <0.005 <0.005 <0.005 <0.0001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.0005 <0.0001 <0.005 <0.0001 29.7 2.69	0.00034 <0.001 <0.001 <0.0001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.0001 <0.005 <0.0001 <0.005 <0.0001 20 2.69	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.0005 <0.005 <0.0005 <0.0001 <10.005 <0.0005 <0.0001 19.5 2.54	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.00042 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.0005 <0.0005 <0.0001 <0.005 <0.0005 <0.0001 3.05	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.0005 <0.005 <0.005 <0.005 <0.0001 <0.005 <0.0001 <0.005 <0.005 <0.007 <0.005 <0.007 <0.005 <0.007 <0.005 <0.007 <0.005 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.0001
Total Nickel Total Selenium Total Silicon Total Silver Total Strontium Total Thallium Total Titanium Total Uranium Total Uranium Total Zinc Total Zirconium Total Calcium Total Calcium Total Magnesium Total Potassium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	MAC MAC AO	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.0005 <0.0005 <0.0005 <0.0025 <0.0005 <2.0005 <0.0029 22.8 2.31 <0.5	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.0005 <0.005 <0.005 <0.005 <1.0005 <0.005 <0.005 <0.004 2.81 0.404	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.0005 <0.0005 <0.0005 <0.0001 20.005 <0.0001 29.7 2.69 0.569	0.00034 <0.001 <0.001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.005 <0.005 <0.0001 20 2.69 0.386	0.00048 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.0005 <0.005 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 19.5 2.54 0.411	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 18.5 3.06 0.381	0.00042 <0.001 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.0005 <0.005 <0.005 <0.005 <0.0001 15.9 3.05 0.353	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.0002 0.0542 <0.0005 <0.005 <0.005 <0.005 <0.0001 20.005 <0.005 <0.005 <0.005 <0.004 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0
Total Nickel Total Selenium Total Silicon Total Silicon Total Sirver Total Strontium Total Thallium Total Titanium Total Uranium Total Vanadium Total Zinc Total Zirconium Total Calcium Total Calcium Total Magnesium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.02 0.12 0.05	MAC MAC	<0.0050 <0.00025 <0.0010 <0.0005 8.18 0.00031 0.065 <0.0005 <0.0005 <0.0025 <0.0025 <0.0005 20.0005 20.0029	<0.001 <0.001 <0.001 <0.0001 7.91 <0.00002 0.0495 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <1.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.00101 <0.001 <0.001 <0.001 <0.0001 <0.0001 8.16 <0.00002 0.0551 <0.0005 <0.005 <0.005 <0.005 <0.0001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.001 <0.001 <0.001 <0.0001 10.4 <0.00002 0.0799 <0.00001 <0.005 <0.0005 <0.0001 <0.005 <0.0001 29.7 2.69	0.00034 <0.001 <0.001 <0.0001 <0.0001 7.87 <0.00002 0.0549 <0.0005 <0.005 <0.0001 <0.005 <0.0001 <0.005 <0.0001 20 2.69	0.00048 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0517 <0.0005 <0.005 <0.0005 <0.0001 <10.005 <0.0005 <0.0001 19.5 2.54	0.00044 0.0011 <0.001 <0.001 <0.0001 7.69 <0.00002 0.0466 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.00042 <0.001 <0.001 0.0001 7.19 <0.00002 0.0421 <0.0005 <0.0005 <0.0001 <0.005 <0.0005 <0.0001 3.05	0.00034 <0.001 <0.001 <0.001 <0.0001 7.66 <0.00002 0.0542 <0.0005 <0.005 <0.005 <0.005 <0.0001 <0.005 <0.0001 <0.005 <0.005 <0.007 <0.005 <0.007 <0.005 <0.007 <0.005 <0.007 <0.005 <0.007 <0.005 <0.007 <0.007 <0.007 <0.007

Notes below about pH (2015) from <a href="https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-publications/water-quality/guidelines-canadian-drinking-water-publications/water-quality/guidelines-canadian-drinking-water-publications/water-quality/guidelines-canadian-drinking-water-publications/wat quality-summary-table.html# ftn1

Туре	Parameter (published, reaffirmed)	MAC (mg/L)	Other value (mg/L)	Common sources of parameter in water	Health considerations	Comments
Treatment- related	pH (2015)	None	7.0-10.5	Not applicable		The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components.